Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962312
1.
P. Vennéguès, Z. Bougrioua, and T. Guehne, Jpn. J. Appl. Phys. 46, 4089 (2007).
http://dx.doi.org/10.1143/JJAP.46.4089
2.
X. Ni, M. Wu, J. Lee, X. Li, A. A. Baski, Ü. Özgur, and H. Morkoç, Appl. Phys. Lett. 95, 111102 (2009).
http://dx.doi.org/10.1063/1.3225157
3.
Q. Sun, C. D. Yerino, B. Leyng, J. Han, and M. E. Coltrin, J. Appl. Phys. 110, 053517 (2011).
http://dx.doi.org/10.1063/1.3632073
4.
A. Krost, A. Dadgar, G. Strassburger, and R. Clos, Phys. Status Solidi A 200, 26 (2003).
http://dx.doi.org/10.1002/pssa.200303428
5.
M. Wei, X. Wang, X. Pan, H. Xiao, C. Wang, M. Zhang, and Z. Wang, J. Phys.: Conf. Ser. 276, 1 (2011).
http://dx.doi.org/10.1088/1742-6596/276/1/012094
6.
L. Tarnawska, P. Zaumseil, M. A. Schubert, S. Okur, U. Ozgur, H. Morkoç, R. Paszkiewicz, P. Storck, and T. Schroeder, J. Appl. Phys. 111, 073509 (2012).
http://dx.doi.org/10.1063/1.3699201
7.
T. Grinys, R. Dargis, A. Kalpakovaitė, S. Stanionytė, A. Clarkc, F. Arkunc, I. Reklaitis, and R. Tomašiūnas, J. Cryst. Growth 424, 28 (2015).
http://dx.doi.org/10.1016/j.jcrysgro.2015.03.032
8.
R. Dargis, A. Clark, F. Arkun, T. Grinys, R. Tomasiunas, A. O'Hara, and A. Demkov, J. Vac. Sci. Technol., A 32, 041506 (2014).
http://dx.doi.org/10.1116/1.4882173
9.
A. Szyszka, L. Lupina, G. Lupina, M. Mazur, M. A. Schubert, P. Storck, S. B. Thapa, and T. Schroeder, Appl. Phys. Lett. 104, 011106 (2014).
http://dx.doi.org/10.1063/1.4861000
10.
S. Figge, T. Böttcher, S. Einfeldt, and D. Hommel, J. Cryst. Growth 221, 262 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00696-5
11.
F. Tendille, M. Hugues, P. Vennegues, M. Teisseire, and P. D. Mierry, Semicond. Sci. Technol. 30, 065001 (2015).
http://dx.doi.org/10.1088/0268-1242/30/6/065001
12.
Q. Sun, C. D. Yerino, T. S. Ko, Y. S. Cho, I.-H. Lee, J. Han, and M. E. Coltrin, J. Appl. Phys. 104, 093523 (2008).
http://dx.doi.org/10.1063/1.3009969
13.
H. Li, L. Geelhaar, H. Riechert, and C. Draxl, Phys. Rev. Lett. 115, 085503 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.085503
14.
S. Ploch, M. Frentrup, T. Wernicke, M. Pristovsek, M. Weyers, and M. Kneissl, J. Cryst. Growth 312, 2171 (2010).
http://dx.doi.org/10.1016/j.jcrysgro.2010.04.043
15.
R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Appl. Phys. Lett. 86, 021908 (2005).
http://dx.doi.org/10.1063/1.1852085
16.
J. Mei, S. Srinivasan, R. Liu, F. A. Ponce, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 88, 141912 (2006).
http://dx.doi.org/10.1063/1.2193352
17.
I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. Muller, and D. Gerthsen, Phys. Rev. B 83, 035314 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035314
18.
S. Khromov, B. Monemar, V. Avrutin, H. Morkoç, L. Hultman, and G. Pozina, Appl. Phys. Lett. 103, 192101 (2013).
http://dx.doi.org/10.1063/1.4828820
19.
M. Frentrup, S. Ploch, M. Pristovsek, and M. Kneissl, Phys. Status Solidi B 48, 583 (2011).
http://dx.doi.org/10.1002/pssb.201046489
20.
S. A. Kukushkin, A. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin, and K. A. Tcarik, Rev. Adv. Mater. Sci. 17, 32 (2008); available at http://www.ipme.ru/e-journals/RAMS/no_11708/kukushkin.pdf.
21.
H. Bommer and Z. Anorg, Allg. Chem. 241, 273 (1939).
http://dx.doi.org/10.1002/zaac.19392410215
22.
V. Jindal, “ Development of III-nitride nanostructures by metal-organic chemical vapor deposition,” Report No. Umi Microform 3348178, 2008.
23.
N. Klauza, R. Steins, H. Hardtdegen, and H. Lueth, J. Cryst. Growth 272, 100 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.08.060
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962312
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962312
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962312
2016-09-08
2016-09-28

Abstract

After epitaxial growth of GaN on Si(100) substrates using an interlayer, two dominant growth orientations can be observed: semi-polar as well as non-polar . Epilayers with the orientation lead to the formation of truncated pyramids, which were studied in detail by high-resolution X-ray diffraction, photoluminescence, and scanning electron microscopy (SEM). Depending on the GaN growth orientation and in-plane relation to the interlayer, lattice mismatches in the growth plane were calculated. In order to understand the formation of truncated pyramids, a method for facet identification from SEM images under different tilt angles was developed. This method was used to reconstruct truncated pyramids from our experiments. These were then compared with calculations of the corresponding kinetic Wulff construction, to explain the preferential growth of GaN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962312.html;jsessionid=-MQKXUgdPEaz3X0YflY2pf7O.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962312&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962312&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962312'
Right1,Right2,Right3,