Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962371
1.
M. Liu, “ Pore characterization of ultralow-k dielectric thin films using positronium annihilation spectroscopy,” Ph.D. thesis, University of Michigan, 2008.
2.
K. Buchanan, in GaAs Mantech, San Diego (2002).
3.
H. Kudo, M. Haneda, N. Ohtsuka, T. Tabira, M. Sunayama, H. Ochimizu, H. Sakai, T. Owada, H. Kitada, and Y. Nara, IEEE Trans. Electron Devices 58, 3369 (2011).
http://dx.doi.org/10.1109/TED.2011.2162959
4.
B. Feldman and S. T. Dunham, Appl. Phys. Lett. 95, 222101 (2009).
http://dx.doi.org/10.1063/1.3257700
5.
Y. Au, Y. Lin, and R. G. Gordon, J. Electrochem. Soc. 158, D248 (2011).
http://dx.doi.org/10.1149/1.3556699
6.
J. Koike and M. Wada, Appl. Phys. Lett. 87, 41911 (2005).
http://dx.doi.org/10.1063/1.1993759
7.
Y. Ohoka, Y. Ohba, A. Isobayashi, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura, and S. Kadomura, in International Interconnect Technology Conference, Burlingame, California ( IEEE, 2007), pp. 6769.
8.
K. Vanstreels, C. Wu, and M. R. Baklanov, ECS J. Solid State Sci. Technol. 4, N3058 (2014).
http://dx.doi.org/10.1149/2.0071501jss
9.
Y.-L. Cheng, B.-H. Lin, and S.-W. Huang, Thin Solid Films 572, 44 (2014).
http://dx.doi.org/10.1016/j.tsf.2014.07.069
10.
H. Cui, R. J. Carter, D. L. Moore, H.-G. Peng, D. W. Gidley, and P. A. Burke, J. Appl. Phys. 97, 113302 (2005).
http://dx.doi.org/10.1063/1.1926392
11.
J. Bao, H. Shi, J. Liu, H. Huang, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 26, 219 (2008).
http://dx.doi.org/10.1116/1.2834562
12.
S. K. Rutledge, B. A. Banks, M. Forkapa, T. Stueber, E. Sechkar, and K. Malinowski, J. Am. Inst. Conserv. 39, 65 (2000).
http://dx.doi.org/10.2307/3179964
13.
Z. Tokei, J. Van Aelst, C. Waldfried, O. Escorcia, P. Roussel, O. Richard, Y. Travaly, G. P. Beyer, and K. Maex, in International Interconnect Technology Conference, Burlingame, California ( IEEE, 2005), pp. 495500.
14.
J. Bogan, P. Casey, A. McCoy, and G. Hughes, in International Interconnect Technology Conference, San Jose, California ( IEEE, 2012), pp. 12.
15.
P. Casey, J. Bogan, J. G. Lozano, P. D. Nellist, and G. Hughes, J. Appl. Phys. 110, 54507 (2011).
http://dx.doi.org/10.1063/1.3630123
16.
J. M. Ablett, C. J. Wilson, N. M. Phuong, J. Koike, Z. Tokei, G. E. Sterbinsky, and J. C. Woicik, Jpn. J. Appl. Phys., Part 1 51, 05EB01 (2012).
http://dx.doi.org/10.7567/JJAP.51.05EB01
17.
N. Jourdan, M. B. Krishtab, M. R. Baklanov, J. Meersschaut, C. J. Wilson, J. M. Ablett, E. Fonda, L. Zhao, S. Van Elshocht, Z. Tökei, and E. Vancoille, Electrochem. Solid-State Lett. 15, H176 (2012).
http://dx.doi.org/10.1149/2.006206esl
18.
P. Casey, J. Bogan, B. Brennan, and G. Hughes, Appl. Phys. Lett. 98, 113508 (2011).
http://dx.doi.org/10.1063/1.3567926
19.
J. M. Ablett, J. C. Woicik, Z. Tőkei, S. List, and E. Dimasi, Appl. Phys. Lett. 94, 42112 (2009).
http://dx.doi.org/10.1063/1.3068500
20.
C. J. Wilson, H. Volders, K. Croes, M. Pantouvaki, G. P. Beyer, A. B. Horsfall, A. G. O'Neill, and Z. Tőkei, Microelectron. Eng. 87, 398 (2010).
http://dx.doi.org/10.1016/j.mee.2009.06.023
21.
Z. Tőkei, K. Croes, and G. P. Beyer, Microelectron. Eng. 87, 348 (2010).
http://dx.doi.org/10.1016/j.mee.2009.06.025
22.
Y. Furukawa, R. Wolters, H. Roosen, J. H. M. Snijders, and R. Hoofman, Microelectron. Eng. 76, 25 (2004).
http://dx.doi.org/10.1016/j.mee.2004.07.017
23.
J. Bogan, A. P. McCoy, R. O'Connor, P. Casey, C. Byrne, and G. Hughes, Microelectron. Eng. 130, 46 (2014).
http://dx.doi.org/10.1016/j.mee.2014.09.012
24.
C. Powell, NIST EAL Database (2001).
25.
L. Gao and T. J. McCarthy, Langmuir 22, 6234 (2006).
http://dx.doi.org/10.1021/la060254j
26.
H. B. Eral, D. J. C. M. 't Mannetje, and J. M. Oh, Colloid Polym. Sci. 291, 247 (2013).
http://dx.doi.org/10.1007/s00396-012-2796-6
27.
A. W. Neumann, Adv. Colloid Interface Sci. 4, 105191 (1974).
http://dx.doi.org/10.1016/0001-8686(74)85001-3
28.
Applied Surface Thermodynamics, edited by A. W. Neumann, R. David, and Y. Zuo, 2nd ed. ( CRC/Taylor & Francis, Boca Raton, FL, 2011).
29.
R. Raj, S. C. Maroo, and E. N. Wang, Nano Lett. 13, 4 (2013).
http://dx.doi.org/10.1021/nl304647t
30.
S. Takeda, M. Fukawa, Y. Hayashi, and K. Matsumoto, Thin Solid Films 339, 220 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01152-3
31.
D. J. Preston, N. Miljkovic, J. Sack, R. Enright, J. Queeney, and E. N. Wang, Appl. Phys. Lett. 105, 11601 (2014).
http://dx.doi.org/10.1063/1.4886410
32.
A. P. McCoy, J. Bogan, L. Walsh, C. Byrne, R. O'Connor, J. C. Woicik, and G. Hughes, J. Phys. Appl. Phys. 48, 325102 (2015).
http://dx.doi.org/10.1088/0022-3727/48/32/325102
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962371
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962371
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962371
2016-09-13
2016-10-01

Abstract

The surface treatment of ultralow-κ dielectric layers by exposure to atomic oxygen is presented as a potential mechanism to modify the chemical composition of the dielectric surface to facilitate copper diffusion barrier layer formation. High carbon content, low-κ dielectric films of varying porosity were exposed to atomic oxygen treatments at room temperature, and x-ray photoelectron spectroscopy studies reveal both the depletion of carbon and the incorporation of oxygen at the surface. Subsequent dynamic water contact angle measurements show that the chemically modified surfaces become more hydrophilic after treatment, suggesting that the substrates have become more “SiO-like” at the near surface region. This treatment is shown to be thermally stable up to 400 °C. High resolution electron energy loss spectroscopy elemental profiles confirm the localised removal of carbon from the surface region. Manganese (≈1 nm) was subsequently deposited on the modified substrates and thermally annealed to form surface localized MnSiO based barrier layers. The energy-dispersive X-ray spectroscopy elemental maps show that the atomic oxygen treatments facilitate the formation of a continuous manganese silicate barrier within dense low-k films, but significant manganese diffusion is observed in the case of porous substrates, negatively impacting the formation of a discrete barrier layer. Ultimately, the atomic oxygen treatment proves effective in modifying the surface of non-porous dielectrics while continuing to facilitate barrier formation. However, in the case of high porosity films, diffusion of manganese into the bulk film remains a critical issue.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962371.html;jsessionid=jbYliH1j0G7z7Wk7Un2M9iXM.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962371&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962371&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962371'
Right1,Right2,Right3,