Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002).
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. ( Wiley, New York, 1981).
V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gosele, Small 2, 85 (2006).
J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Nano Lett. 6, 973 (2006).
D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, Nano Lett. 11, 3117 (2011).
C. Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, and F. M. Ross, Science 326, 1247 (2009).
L. Chen, W. Y. Fung, and W. Lu, Nano Lett. 13, 5521 (2013).
S. A. Dayeh, J. Wang, N. Li, J. Y. Huang, A. V. Gin, and S. T. Picraux, Nano Lett. 11, 4200 (2011).
D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and J. L. Lauhon, Nat. Nanotechnol. 4, 315 (2009).
S. A. Dayeh, N. H. Mack, J. Y. Huang, and S. T. Picraux, Appl. Phys. Lett. 99, 023102 (2011).
J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and J. L. Lauhon, Nat. Nanotechnol. 3, 168 (2008).
M. R. McCartney and D. J. Smith, Annu. Rev. Mater. Res. 37, 729 (2007).
M. R. McCartney, N. Agarwal, S. Chung, D. A. Cullen, M.-G. Han, K. He, L. Li, H. Wang, L. Zhou, and D. J. Smith, Ultramicroscopy 110, 375 (2010).
M. I. den Hertog, H. Schmid, D. Cooper, J. L. Rouviere, M. T. Bjork, H. Riel, P. Rivallin, S. Karg, and W. Riess, Nano Lett. 9, 3837 (2009).
K. He, J. H. Cho, Y. Jung, S. T. Picraux, and J. Cumings, Nanotechnology 24, 115703 (2013).
Z. Gan, D. E. Perea, J. Yoo, S. T. Picraux, D. J. Smith, and M. R. McCartney, Appl. Phys. Lett. 103, 153108 (2013).
L. Li, Z. Gan, M. R. McCartney, H. Liang, H. Yu, W. J. Yin, Y. Yan, Y. Gao, J. Wang, and D. J. Smith, Adv. Mater. 26, 1052 (2014).
J. Li, M. R. McCartney, R. E. Dunin-Borkowski, and D. J. Smith, Acta Cryst. A 55, 652 (1999).
J. Li, M. R. McCartney, and D. J. Smith, Ultramicroscopy 94, 149 (2003).
H. Lichte, F. Borrnert, A. Lenk, A. Lubk, F. Roder, J. Sickmann, S. Sturm, K. Vogel, and D. Wolf, Ultramicroscopy 134, 126 (2013).
I. Amit, U. Givan, J. G. Connell, D. F. Paul, J. S. Hammond, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 13, 2598 (2013).
M. T. Bjork, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat. Nanotechnol. 4, 103 (2009).
E. Koren, N. Berkovitch, and Y. Rosenwaks, Nano Lett. 10, 1163 (2010).
E. Koren, J. K. Hyun, U. Givan, E. R. Hemesath, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 11, 183 (2011).
H. Schmid, M. T. Björk, J. Knoch, S. Karg, H. Riel, and W. Riess, Nano Lett. 9, 173 (2009).
Y. Wang, K.-K. Lew, T. T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, and T. S. Mayer, Nano Lett. 5, 2139 (2005).
J. D. Christesen, C. W. Pinion, X. Zhang, J. R. McBride, and J. F. Cahoon, ACS Nano 8, 11790 (2014).
F. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
T. Hoshikawa, X. Huang, K. Hoshikawa, and S. Uda, Jpn. J. Appl. Phys., Part 1 47, 8691 (2008).
K. B. Wolfstirn, J. Phys. Chem. Solids 16, 279 (1960).
N. Sclar, IEEE Trans. Electron Devices 24, 709 (1977).
D. E. Perea, E. Wijaya, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, J. Solid State Chem. 181, 1642 (2008).

Data & Media loading...


Article metrics loading...



Nanowires (NWs) consisting of P-doped Si/B-doped Ge axial heterojunctions were grown via vapor-liquid-solid synthesis using a combination of Au and AuGa catalyst particles. Off-axis electron holography (EH) was used to measure the electrostatic potential profile across the junction resulting from electrically active dopants, and atom-probe tomography (APT) was used to map total dopant concentration profiles. A comparison of the electrostatic potential profile measured from EH with simulations that were based on the APT results indicates that Ga atoms unintentionally introduced during AuGa catalyst growth were mostly electronically inactive. This finding was also corroborated by electron-holography biasing experiments. Electronic band structure simulations guided by the experimental results helped to provide a much better explanation of the NW electrical behavior. Overall, this work demonstrates that the combination of EH, APT, biasing, and simulations allows a more complete understanding of NW electrical properties to be developed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd