Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962380
1.
M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002).
http://dx.doi.org/10.1038/415617a
2.
S. M. Sze, Physics of Semiconductor Devices, 2nd ed. ( Wiley, New York, 1981).
3.
V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gosele, Small 2, 85 (2006).
http://dx.doi.org/10.1002/smll.200500181
4.
J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Nano Lett. 6, 973 (2006).
http://dx.doi.org/10.1021/nl060166j
5.
D. E. Perea, N. Li, R. M. Dickerson, A. Misra, and S. T. Picraux, Nano Lett. 11, 3117 (2011).
http://dx.doi.org/10.1021/nl201124y
6.
C. Y. Wen, M. C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E. A. Stach, and F. M. Ross, Science 326, 1247 (2009).
http://dx.doi.org/10.1126/science.1178606
7.
L. Chen, W. Y. Fung, and W. Lu, Nano Lett. 13, 5521 (2013).
http://dx.doi.org/10.1021/nl403112a
8.
S. A. Dayeh, J. Wang, N. Li, J. Y. Huang, A. V. Gin, and S. T. Picraux, Nano Lett. 11, 4200 (2011).
http://dx.doi.org/10.1021/nl202126q
9.
D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and J. L. Lauhon, Nat. Nanotechnol. 4, 315 (2009).
http://dx.doi.org/10.1038/nnano.2009.51
10.
S. A. Dayeh, N. H. Mack, J. Y. Huang, and S. T. Picraux, Appl. Phys. Lett. 99, 023102 (2011).
http://dx.doi.org/10.1063/1.3567932
11.
J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch-Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and J. L. Lauhon, Nat. Nanotechnol. 3, 168 (2008).
http://dx.doi.org/10.1038/nnano.2008.5
12.
M. R. McCartney and D. J. Smith, Annu. Rev. Mater. Res. 37, 729 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084219
13.
M. R. McCartney, N. Agarwal, S. Chung, D. A. Cullen, M.-G. Han, K. He, L. Li, H. Wang, L. Zhou, and D. J. Smith, Ultramicroscopy 110, 375 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.01.001
14.
M. I. den Hertog, H. Schmid, D. Cooper, J. L. Rouviere, M. T. Bjork, H. Riel, P. Rivallin, S. Karg, and W. Riess, Nano Lett. 9, 3837 (2009).
http://dx.doi.org/10.1021/nl902024h
15.
K. He, J. H. Cho, Y. Jung, S. T. Picraux, and J. Cumings, Nanotechnology 24, 115703 (2013).
http://dx.doi.org/10.1088/0957-4484/24/11/115703
16.
Z. Gan, D. E. Perea, J. Yoo, S. T. Picraux, D. J. Smith, and M. R. McCartney, Appl. Phys. Lett. 103, 153108 (2013).
http://dx.doi.org/10.1063/1.4824775
17.
L. Li, Z. Gan, M. R. McCartney, H. Liang, H. Yu, W. J. Yin, Y. Yan, Y. Gao, J. Wang, and D. J. Smith, Adv. Mater. 26, 1052 (2014).
http://dx.doi.org/10.1002/adma.201304021
18.
J. Li, M. R. McCartney, R. E. Dunin-Borkowski, and D. J. Smith, Acta Cryst. A 55, 652 (1999).
http://dx.doi.org/10.1107/S010876739801719X
19.
J. Li, M. R. McCartney, and D. J. Smith, Ultramicroscopy 94, 149 (2003).
http://dx.doi.org/10.1016/S0304-3991(02)00260-7
20.
H. Lichte, F. Borrnert, A. Lenk, A. Lubk, F. Roder, J. Sickmann, S. Sturm, K. Vogel, and D. Wolf, Ultramicroscopy 134, 126 (2013).
http://dx.doi.org/10.1016/j.ultramic.2013.05.014
21.
I. Amit, U. Givan, J. G. Connell, D. F. Paul, J. S. Hammond, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 13, 2598 (2013).
http://dx.doi.org/10.1021/nl4007062
22.
M. T. Bjork, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat. Nanotechnol. 4, 103 (2009).
http://dx.doi.org/10.1038/nnano.2008.400
23.
E. Koren, N. Berkovitch, and Y. Rosenwaks, Nano Lett. 10, 1163 (2010).
http://dx.doi.org/10.1021/nl9033158
24.
E. Koren, J. K. Hyun, U. Givan, E. R. Hemesath, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 11, 183 (2011).
http://dx.doi.org/10.1021/nl103363c
25.
H. Schmid, M. T. Björk, J. Knoch, S. Karg, H. Riel, and W. Riess, Nano Lett. 9, 173 (2009).
http://dx.doi.org/10.1021/nl802739v
26.
Y. Wang, K.-K. Lew, T. T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, and T. S. Mayer, Nano Lett. 5, 2139 (2005).
http://dx.doi.org/10.1021/nl051442h
27.
J. D. Christesen, C. W. Pinion, X. Zhang, J. R. McBride, and J. F. Cahoon, ACS Nano 8, 11790 (2014).
http://dx.doi.org/10.1021/nn505404y
28.
F. A. Trumbore, Bell Syst. Tech. J. 39, 205 (1960).
http://dx.doi.org/10.1002/j.1538-7305.1960.tb03928.x
29.
T. Hoshikawa, X. Huang, K. Hoshikawa, and S. Uda, Jpn. J. Appl. Phys., Part 1 47, 8691 (2008).
http://dx.doi.org/10.1143/JJAP.47.8691
30.
K. B. Wolfstirn, J. Phys. Chem. Solids 16, 279 (1960).
http://dx.doi.org/10.1016/0022-3697(60)90157-8
31.
N. Sclar, IEEE Trans. Electron Devices 24, 709 (1977).
http://dx.doi.org/10.1109/T-ED.1977.18808
32.
D. E. Perea, E. Wijaya, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon, J. Solid State Chem. 181, 1642 (2008).
http://dx.doi.org/10.1016/j.jssc.2008.06.007
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962380
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962380
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962380
2016-09-13
2016-09-27

Abstract

Nanowires (NWs) consisting of P-doped Si/B-doped Ge axial heterojunctions were grown via vapor-liquid-solid synthesis using a combination of Au and AuGa catalyst particles. Off-axis electron holography (EH) was used to measure the electrostatic potential profile across the junction resulting from electrically active dopants, and atom-probe tomography (APT) was used to map total dopant concentration profiles. A comparison of the electrostatic potential profile measured from EH with simulations that were based on the APT results indicates that Ga atoms unintentionally introduced during AuGa catalyst growth were mostly electronically inactive. This finding was also corroborated by electron-holography biasing experiments. Electronic band structure simulations guided by the experimental results helped to provide a much better explanation of the NW electrical behavior. Overall, this work demonstrates that the combination of EH, APT, biasing, and simulations allows a more complete understanding of NW electrical properties to be developed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962380.html;jsessionid=HgeondXVyF2D9-vCIndn2DYP.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962380&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962380&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962380'
Right1,Right2,Right3,