Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962397
1.
J. Wu and G. Du, J. Acoust. Soc. Am. 87, 9971003 (1990).
http://dx.doi.org/10.1121/1.399435
2.
J. Wu, J. Acoust. Soc. Am. 89, 21402143 (1991).
http://dx.doi.org/10.1121/1.400907
3.
J. Friend and L. Y. Yeo, Rev. Mod. Phys. 83, 647704 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.647
4.
H. Bruus, J. Dual, J. Hawkes, M. Hill, T. Laurell, J. Nilsson, S. Radel, S. Sadhal, and M. Wiklund, Lab Chip 11, 35793580 (2011).
http://dx.doi.org/10.1039/c1lc90058g
5.
F. G. Mitri, Appl. Phys. Lett. 103, 114102 (2013).
http://dx.doi.org/10.1063/1.4820783
6.
X. Zhang and G. Zhang, Ultrasound Med. Biol. 38, 20072017 (2012).
http://dx.doi.org/10.1016/j.ultrasmedbio.2012.06.014
7.
F. G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 18351844 (2015).
http://dx.doi.org/10.1109/TUFFC.2015.007022
8.
J. Hu and A. K. Santoso, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 14991507 (2004).
http://dx.doi.org/10.1109/TUFFC.2004.1367491
9.
F. G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 18271834 (2015).
http://dx.doi.org/10.1109/TUFFC.2014.006961
10.
F. G. Mitri, J. Appl. Phys. 119, 064901 (2016).
http://dx.doi.org/10.1063/1.4940961
11.
Y. Choe, J. W. Kim, K. K. Shung, and E. S. Kim, Appl. Phys. Lett. 99, 233704 (2011).
http://dx.doi.org/10.1063/1.3665615
12.
F. G. Mitri, Wave Motion 51, 986993 (2014).
http://dx.doi.org/10.1016/j.wavemoti.2014.03.010
13.
G. T. Silva and A. L. Baggio, Ultrasonics 56, 449455 (2015).
http://dx.doi.org/10.1016/j.ultras.2014.09.010
14.
G. T. Silva, A. L. Baggio, J. H. Lopes, and F. G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 576583 (2015).
http://dx.doi.org/10.1109/TUFFC.2014.006912
15.
J. Lee, S.-Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, Appl. Phys. Lett. 95, 073701 (2009).
http://dx.doi.org/10.1063/1.3206910
16.
K. H. Lam, H.-S. Hsu, Y. Li, C. Lee, A. Lin, Q. Zhou, E. S. Kim, and K. K. Shung, Biotechnol. Bioeng. 110, 881886 (2013).
http://dx.doi.org/10.1002/bit.24735
17.
F. Zheng, Y. Li, H.-S. Hsu, C. Liu, C. Tat Chiu, C. Lee, H. Ham Kim, and K. K. Shung, Appl. Phys. Lett. 101, 214104 (2012).
http://dx.doi.org/10.1063/1.4766912
18.
C. Yoon, B. J. Kang, C. Lee, H. H. Kim, and K. K. Shung, Appl. Phys. Lett. 105, 214103 (2014).
http://dx.doi.org/10.1063/1.4902923
19.
C. R. P. Courtney, B. W. Drinkwater, C. E. M. Demore, S. Cochran, A. Grinenko, and P. D. Wilcox, Appl. Phys. Lett. 102, 123508 (2013).
http://dx.doi.org/10.1063/1.4798584
20.
G. Kaduchak, D. N. Sinha, and D. C. Lizon, Rev. Sci. Instrum. 73, 13321336 (2002).
http://dx.doi.org/10.1063/1.1448900
21.
F. G. Mitri, J. Appl. Phys. 117, 094903 (2015).
http://dx.doi.org/10.1063/1.4914064
22.
J. L. Thomas and R. Marchiano, Phys. Rev. Lett. 91, 244302 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.244302
23.
J. L. Ealo, J. C. Prieto, and F. Seco, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 16511657 (2011).
http://dx.doi.org/10.1109/TUFFC.2011.1992
24.
F. G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 20892097 (2014).
http://dx.doi.org/10.1109/TUFFC.2014.006498
25.
N. Jiménez, R. Picó, V. Sánchez-Morcillo, V. Romero-García, L. M. García-Raffi, and K. Staliunas, e-print arXiv:1604.08353.
26.
D. Baresch, J.-L. Thomas, and R. Marchiano, J. Appl. Phys. 113, 184901 (2013).
http://dx.doi.org/10.1063/1.4803078
27.
G. T. Silva, J. H. Lopes, and F. G. Mitri, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 12071212 (2013).
http://dx.doi.org/10.1109/TUFFC.2013.2683
28.
L. Schmid, D. A. Weitz, and T. Franke, Lab Chip 14, 37103718 (2014).
http://dx.doi.org/10.1039/C4LC00588K
29.
J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675678 (2008).
http://dx.doi.org/10.1038/nphoton.2008.201
30.
G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.213901
31.
M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264267 (1979).
http://dx.doi.org/10.1119/1.11855
32.
M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, Opt. Photonics News 24, 3037 (2013).
http://dx.doi.org/10.1364/OPN.24.6.000030
33.
J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 1288012891 (2008).
http://dx.doi.org/10.1364/OE.16.012880
34.
P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, Opt. Lett. 36, 31913193 (2011).
http://dx.doi.org/10.1364/OL.36.003191
35.
Z. Ziyu, Z. Weiping, and T. Jianguo, J. Opt. 18, 025607 (2016).
http://dx.doi.org/10.1088/2040-8978/18/2/025607
36.
J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K. Efremidis, and Z. Chen, Sci. Rep. 5, 12086 (2015).
http://dx.doi.org/10.1038/srep12086
37.
P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, Nat. Methods 4, 311313 (2007).
http://dx.doi.org/10.1038/nmeth1017
38.
P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, Science 322, 10651069 (2008).
http://dx.doi.org/10.1126/science.1162493
39.
Z. Lin, X. Guo, J. Tu, Q. Ma, J. Wu, and D. Zhang, J. Appl. Phys. 117, 104503 (2015).
http://dx.doi.org/10.1063/1.4914295
40.
U. Bar-Ziv, A. Postan, and M. Segev, Phys. Rev. B 92, 100301 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.100301
41.
R. Shilton, M. K. Tan, L. Y. Yeo, and J. R. Friend, J. Appl. Phys. 104, 014910 (2008).
http://dx.doi.org/10.1063/1.2951467
42.
J. W. Goodman, Introduction to Fourier Optics ( McGraw-Hill, New York, 1968), pp. 5562.
43.
W. Lu, J. Chen, Z. Lin, and S. Liu, Prog. Electromag. Res. Lett. 115, 409422 (2011).
http://dx.doi.org/10.2528/PIER11031704
44.
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. ( Springer-Verlag, Berlin, Germany, 1998).
45.
F. G. Mitri, AIP Adv. 5, 097205 (2015).
http://dx.doi.org/10.1063/1.4931916
46.
F. G. Mitri, Ultrasonics 62, 244252 (2015).
http://dx.doi.org/10.1016/j.ultras.2015.05.024
47.
F. G. Mitri, Wave Motion 66, 3144 (2016).
http://dx.doi.org/10.1016/j.wavemoti.2016.05.005
48.
L. Flax, G. C. Gaunaurd, and H. Überall, in Physical Acoustics, edited by W. P. Mason ( Academic Press, New York, 1981), Vol. XV, pp. 191294.
49.
F. G. Mitri, Ultrasonics 62, 2026 (2015).
http://dx.doi.org/10.1016/j.ultras.2015.02.019
50.
L. P. Gor'kov, Sov. Phys. Dokl. 6, 773775 (1962).
51.
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. ( Butterworth-Heinemann, 1987).
52.
F. G. Mitri, J. Appl. Phys. 118, 184902 (2015).
http://dx.doi.org/10.1063/1.4935275
53.
F. G. Mitri, Ultrasonics 66, 2733 (2016).
http://dx.doi.org/10.1016/j.ultras.2015.12.003
54.
F. G. Mitri, J. Appl. Phys. 118, 214903 (2015).
http://dx.doi.org/10.1063/1.4936617
55.
F. G. Mitri, Phys. Fluids 28, 077104 (2016).
http://dx.doi.org/10.1063/1.4959071
56.
F. G. Mitri, Wave Motion 57, 231238 (2015).
http://dx.doi.org/10.1016/j.wavemoti.2015.04.006
57.
F. G. Mitri, EPL (Europhys. Lett.) 112, 34002 (2015).
http://dx.doi.org/10.1209/0295-5075/112/34002
58.
F. G. Mitri, e-print arXiv:1606.07417.
59.
S. S. Sadhal, Lab Chip 12, 26002611 (2012).
http://dx.doi.org/10.1039/c2lc40243b
60.
M. Wiklund, R. Green, and M. Ohlin, Lab Chip 12, 24382451 (2012).
http://dx.doi.org/10.1039/c2lc40203c
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962397
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962397
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962397
2016-09-08
2016-09-29

Abstract

The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy “acoustical-sheet” (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter (where is the wavenumber and is the radius) and the location of the cylinder in the beam. Applications in acoustic levitation, long-distance particle transport and manipulation, as well as acousto-fluidics directly benefit from the results of this analysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962397.html;jsessionid=WSZrRZZsp9trjC6vor25o_G5.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962397&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962397&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962397'
Right1,Right2,Right3,