Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962454
1.
A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Rep. 408, 131314 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.11.001
2.
H. Raether, Surface Plasmons on Smooth Surfaces in Springer Tracts in Modern Physics ( Springer, Berlin Heidelberg, 1988).
3.
M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, Science 332, 702704 (2011).
http://dx.doi.org/10.1126/science.1203056
4.
C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, Nano Lett. 5, 709711 (2005).
http://dx.doi.org/10.1021/nl050127s
5.
K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1667
6.
Q. Bao and K. P. Loh, ACS Nano 6, 36773694 (2012).
http://dx.doi.org/10.1021/nn300989g
7.
Y. M. Bahk, G. Ramakrishnan, J. Choi, H. Song, G. Choi, H. Y. Kim, K. J. Ahn, D. S. Kim, and P. C. Planken, ACS Nano 8, 90899096 (2014).
http://dx.doi.org/10.1021/nn5025237
8.
S. Thongrattanasiri, F. H. Koppens, and F. J. Garcia de Abajo, Phys. Rev. Lett. 108, 047401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.047401
9.
H. J. Li, L. L. Wang, B. Sun, Z. R. Huang, and X. Zhai, J. Appl. Phys. 116, 224505 (2014).
http://dx.doi.org/10.1063/1.4903965
10.
F. J. Garcia de Abajo, ACS Photonics 1, 135152 (2014).
http://dx.doi.org/10.1021/ph400147y
11.
Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, Sci. Rep. 5, 13956 (2015).
http://dx.doi.org/10.1038/srep13956
12.
A. Vakil and N. Engheta, “ Transformation optics using graphene,” Science 332, 12911294 (2011).
http://dx.doi.org/10.1126/science.1202691
13.
E. Fradkin, Phys. Rev. B 33, 32633268 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.3263
14.
R. E. Peierls, Ann. I. H. Poincare 5, 177222 (1935).
15.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
16.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
17.
A. N. Grigorenko, M. Polini, and K. S. Novoselov, Nat. Photonics 6, 749758 (2012).
http://dx.doi.org/10.1038/nphoton.2012.262
18.
J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. Garcia de Abajo, ACS Nano 6, 431440 (2012).
http://dx.doi.org/10.1021/nn2037626
19.
J. H. Strait, P. Nene, W.-M. Chan, M. W. C. Manolatou, S. Tiwari, F. Rana, J. W. Kevek, and P. L. McEuen, Phys. Rev. B 87, 241410 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.241410
20.
F. H. Koppens, D. E. Chang, and F. J. Garcia de Abajo, Nano Lett. 11, 33703377 (2011).
http://dx.doi.org/10.1021/nl201771h
21.
W. Gao, J. Shu, C. Qiu, and Q. Xu, ACS Nano 6, 78067813 (2012).
http://dx.doi.org/10.1021/nn301888e
22.
L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, Opt. Express 18, 1439514400 (2010).
http://dx.doi.org/10.1364/OE.18.014395
23.
A. Y. Nikitin, P. Alonso-González, and R. Hillenbrand, Nano Lett. 14, 28962901 (2014).
http://dx.doi.org/10.1021/nl500943r
24.
H. Lu, C. Zeng, Q. Zhang, X. Liu, M. M. Hossain, P. Reineck, and M. Gu, Sci. Rep. 5, 8443 (2015).
http://dx.doi.org/10.1038/srep08443
25.
P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and F. Casanova, Science 344, 13691373 (2014).
http://dx.doi.org/10.1126/science.1253202
26.
Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, ACS Nano 7, 23882395 (2013).
http://dx.doi.org/10.1021/nn3055835
27.
Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, ACS Photonics 2, 151156 (2015).
http://dx.doi.org/10.1021/ph500366z
28.
S. Xia, X. Zhai, L. Wang, H. Li, Z. Huang, and Q. Lin, Opt. Commun. 352, 110115 (2015).
http://dx.doi.org/10.1016/j.optcom.2015.05.002
29.
L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen et al., Nat. Nanotechnol. 6, 630634 (2011).
http://dx.doi.org/10.1038/nnano.2011.146
30.
S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, Opt. Express 24, 427436 (2016).
http://dx.doi.org/10.1364/OE.24.000427
31.
S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, Opt. Express 24, 1633616348 (2016).
http://dx.doi.org/10.1364/OE.24.016336
32.
M. Farhat, S. Guenneau, and H. Bağcı, Phys. Rev. Lett. 111, 237404 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.237404
33.
J. Schiefele, J. Pedrós, F. Sols, F. Calle, and F. Guinea, Phys. Rev. Lett. 111, 237405 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.237405
34.
A. Ferreira and N. M. R. Peres, Phys. Rev. B 86, 205401 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205401
35.
I. Soto Lamata, P. Alonso-González, R. Hillenbrand, and A. Y. Nikitin, ACS Photonics 2, 280286 (2015).
http://dx.doi.org/10.1021/ph500377u
36.
I. V. Bondarev, L. M. Woods, and K. Tatur, Phys. Rev. B 80, 085407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.085407
37.
L. Martin-Moreno, F. J. Garcia de Abajo, and F. J. Garcia-Vidal, Phys. Rev. Lett. 115, 173601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.173601
38.
Y. Gao, G. Ren, B. Zhu, H. Liu, Y. Lian, and S. Jian, Opt. Express 22, 2432224331 (2014).
http://dx.doi.org/10.1364/OE.22.024322
39.
J. Zhao, X. Liu, W. Qiu, Y. Ma, Y. Huang, J. X. Wang, K. Qiang, and J. Q. Pan, Opt. Express 22, 57545761 (2014).
http://dx.doi.org/10.1364/OE.22.005754
40.
D. Correas-Serrano, J. S. Gomez-Diaz, A. Alù, and A. Alvarez-Melcon, IEEE Trans. THz Sci. Technol. 5, 951960 (2015).
http://dx.doi.org/10.1109/TTHZ.2015.2472985
41.
D. Correas-Serrano, J. S. Gomez-Diaz, and A. Alvarez-Melcon, in Antennas and Propagation Society International Symposium (IEEE, 2014), pp. 896897.
42.
Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, Opt. Lett. 39, 12351237 (2014).
http://dx.doi.org/10.1364/OL.39.001235
43.
Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Nano Lett. 14, 299304 (2014).
http://dx.doi.org/10.1021/nl404042h
44.
S. He, X. Zhang, and Y. He, Opt. Express 21, 3066430673 (2013).
http://dx.doi.org/10.1364/OE.21.030664
45.
P. Nene, J. H. Strait, W. M. Chan, C. Manolatou, S. Tiwari, P. L. McEuen, and F. Rana, Appl. Phys. Lett. 105, 143108 (2014).
http://dx.doi.org/10.1063/1.4897442
46.
Y. Fan, Z. Wei, Z. Zhang, and H. Li, Opt. Lett. 38, 54105413 (2013).
http://dx.doi.org/10.1364/OL.38.005410
47.
T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, Opt. Express 22, 76697677 (2014).
http://dx.doi.org/10.1364/OE.22.007669
48.
S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, and M. Wubs, Plasmonics 8(2), 193199 (2013).
http://dx.doi.org/10.1007/s11468-012-9375-z
49.
A. Dolatabady, N. Granpayeh, and V. F. Nezhad, Opt. Commun. 300, 265268 (2013).
http://dx.doi.org/10.1016/j.optcom.2013.02.037
50.
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206209 (2008).
http://dx.doi.org/10.1126/science.1152793
51.
D. K. Efetov and P. Kim, Phys. Rev. Lett. 105, 256805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.256805
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962454
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962454
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962454
2016-09-14
2016-09-26

Abstract

One of the important challenges that graphene must overcome before it can legitimately declare its irreplaceable position among the fields of plasmonic materials is to achieve efficiently coupling to external light. In this paper, we demonstrate an effective solution to this problem by exciting localized surface plasmon polaritons (SPPs) on graphene-coated nanowire arrays (GCNAs). These SPPs are analyzed by introducing a universal scaling law that considerably simplifies the understanding of these modes. Meanwhile, numerical experiments are carried out to demonstrate the theoretical analysis of plasmon excitations. The excited SPPs permit the control through both geometrical and physical properties. The proposed structure can be used as a tunable optical filter, a highly sensitive refractive index sensor, and other plasmonic modulation devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962454.html;jsessionid=gB-CP6sLC0sXO78v-SpjVrnD.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962454&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962454&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962454'
Right1,Right2,Right3,