Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/10/10.1063/1.4962509
1.
G. E. Duvall, “ Propagation of plane shock waves in a stress-relaxing medium,” in Stress Waves in Anelastic Solids, edited by H. Kolsky and W. Prager ( Springer-Verlag, Berlin, 1964), pp. 2032.
2.
J. R. Asay, G. R. Fowles, and Y. Gupta, J. Appl. Phys. 43, 744 (1972).
http://dx.doi.org/10.1063/1.1661195
3.
J. N. Johnson and L. M. Barker, J. Appl. Phys. 40(11), 4321 (1969).
http://dx.doi.org/10.1063/1.1657194
4.
L. C. Chhabildas and J. R. Asay, J. Appl. Phys. 50(4), 2749 (1979).
http://dx.doi.org/10.1063/1.326236
5.
E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 110, 073502 (2011).
http://dx.doi.org/10.1063/1.3642989
6.
E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 112, 073504 (2012).
http://dx.doi.org/10.1063/1.4755792
7.
E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 114, 083511 (2013).
http://dx.doi.org/10.1063/1.4819328
8.
E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 115, 243502 (2014).
http://dx.doi.org/10.1063/1.4885047
9.
G. I. Kanel, S. V. Razorenov, G. V. Garkushin, A. S. Savinykh, and E. B. Zaretsky, J. Appl. Phys. 118, 045901 (2015).
http://dx.doi.org/10.1063/1.4927613
10.
E. B. Zaretsky and G. I. Kanel, J. Appl. Phys. 117, 195901 (2015).
http://dx.doi.org/10.1063/1.4921356
11.
V. A. Al'shitz and V. L. Indenbom, Sov. Phys. Usp. 18(1), 1 (1975).
http://dx.doi.org/10.1070/PU1975v018n01ABEH004689
12.
M. A. Meyers, D. J. Benson, O. Vohringer, B. K. Kad, Q. Xue, and H.-H. Fu, Mater. Sci. Eng., A 322, 194 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01131-5
13.
D. L. Olmsted, G. Hecto, W. A. Curtin, and R. J. Clifton, Modell. Simul. Mater. Sci. Eng. 13, 371 (2005).
http://dx.doi.org/10.1088/0965-0393/13/3/007
14.
A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, Dokl. Phys. 53(6), 287 (2008).
http://dx.doi.org/10.1134/S1028335808060013
15.
N. R. Barton, J. V. Bernier, R. Becker, A. Arsenlis, R. Cavallo, J. Marian, M. Rhee, H.-S. Park, B. A. Remington, and R. T. Olson, J. Appl. Phys. 109, 073501 (2011).
http://dx.doi.org/10.1063/1.3553718
16.
J. C. F. Millett, N. K. Bourne, N. T. Park, G. Whiteman, and G. T. Gray III, J. Mater. Sci. 46, 3899 (2011).
http://dx.doi.org/10.1007/s10853-011-5311-4
17.
J. C. F. Millett, M. Cotton, G. Whiteman, N. K. Bourne, N. T. Park, and G. T. Gray III, AIP Conf. Proc. 1426, 1077 (2012).
http://dx.doi.org/10.1063/1.3686465
18.
M. Cotton, J. C. F. Millett, G. Whiteman, and N. Park, AIP Conf. Proc. 1426, 1031 (2012).
http://dx.doi.org/10.1063/1.3686454
19.
J. H. Eggert, R. F. Smith, D. C. Swift, R. E. Rudd, D. E. Fratanduono, D. G. Braun, J. A. Hawreliak, J. M. McNaney, and G. W. Collins, High Pressure Res. 35(4), 339 (2015).
http://dx.doi.org/10.1080/08957959.2015.1071361
20.
G. Whiteman, S. Case, and J. C. F. Millett, J. Phys.: Conf. Ser. 500, 112067 (2014).
http://dx.doi.org/10.1088/1742-6596/500/11/112067
21.
J. C. F. Millett, G. Whiteman, N. T. Park, S. Case, and N. K. Bourne, J. Appl. Phys. 113, 233502 (2013).
http://dx.doi.org/10.1063/1.4810896
22.
G. I. Kanel, S. V. Razorenov, A. V. Utkin, V. E. Fortov, K. Baumung, H. U. Karow, D. Rush, and V. Licht, J. Appl. Phys. 74(12), 7162 (1993).
http://dx.doi.org/10.1063/1.355032
23.
T. S. Duffy and T. J. Ahrens, J. Appl. Phys. 76(2), 835 (1994).
http://dx.doi.org/10.1063/1.357758
24.
J. C. F. Millett, M. Cotton, N. K. Bourne, N. T. Park, and G. Whiteman, J. Appl. Phys. 115, 073506 (2014).
http://dx.doi.org/10.1063/1.4838037
25.
L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).
http://dx.doi.org/10.1063/1.1660986
26.
I. Girlitsky, E. Zaretsky, S. Kalabukhov, M. P. Dariel, and N. Frage, J. Appl. Phys. 115, 243505 (2014).
http://dx.doi.org/10.1063/1.4885436
27.
G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter ( Springer, New York, 2004), p. 33.
28.
G. I. Kanel', J. Appl. Mech. Tech. Phys. 42(2), 358 (2001).
http://dx.doi.org/10.1023/A:1018804709273
29.
Thermophysical Properties of Matter—The TPRC Data Series, Thermal Expansion: Metallic Elements and Alloys Vol. 12, edited by Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai ( IFI/Plenum, New York, Washington, 1975).
30.
J. Ashkenazi, M. Dacorogna, M. Peter, Y. Talmor, E. Walker, and S. Steinemann, Phys. Rev. B 18(8), 4120 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.4120
31.
J. M. Dickinson and P. E. Armstrong, J. Appl. Phys. 38(2), 602 (1967).
http://dx.doi.org/10.1063/1.1709381
32.
V. A. Borisenko and A. I. Troyanskii, Strength Mater. 31(3), 316 (1999).
http://dx.doi.org/10.1007/BF02511014
33.
G. I. Kanel, AIP Conf. Proc. 1426, 939 (2012).
http://dx.doi.org/10.1063/1.3686432
34.
G. I. Kanel, S. V. Razorenov, G. V. Garkushin, S. I. Ashitkov, P. S. Komarov, and M. B. Agranat, Phys. Solid State 56(8), 1569 (2014).
http://dx.doi.org/10.1134/S1063783414080113
35.
S. I. Ashitkov, P. S. Komarov, E. V. Struleva, M. B. Agranat, and G. I. Kanel, JETP Lett. 101(4), 276 (2015).
http://dx.doi.org/10.1134/S0021364015040049
36.
H. L. Prekel, A. Lawley, and H. Conrad, Acta Mater. 16(3), 337 (1968).
http://dx.doi.org/10.1016/0001-6160(68)90020-5
37.
A. Seeger, Philos. Mag. 1, 651 (1956).
http://dx.doi.org/10.1080/14786435608244000
38.
S. Takeuchi, T. Hashimoto, and K. Maeda, Trans. Jpn. Inst. Met. 23(2), 60 (1982).
http://dx.doi.org/10.2320/matertrans1960.23.60
39.
L. Hollang, D. Brunner, and A. Seeger, Mater. Sci. Eng., A 319–321, 233 (2001).
http://dx.doi.org/10.1016/S0921-5093(01)01002-4
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/10/10.1063/1.4962509
Loading
/content/aip/journal/jap/120/10/10.1063/1.4962509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/10/10.1063/1.4962509
2016-09-13
2016-09-28

Abstract

The evolution of elastic-plastic shock waves has been studied in pure molybdenum and niobium at normal and elevated temperatures over propagation distances ranging from 0.03 to 5 mm. The experiments revealed that annealing of the metals substantially increases their Hugoniot elastic limits and, to a lesser degree, their spall strengths. Variations in the resistance of both the metals to fracture in tension with the test temperature can be described as modest. Measuring the decay of the elastic precursor waves with a propagation distance in the two metals has allowed a determining of the relationships between a flow stress and an initial plastic strain rate . It was found that, at the plastic strain rates greater than , the temperature sensitivity of the transient values of is much lower than that at the strain rates below this range. The data normalized on shear moduli of the metals have been approximated by simple functions that, despite substantial differences between the moduli and yield stresses, were found to be virtually identical for the two metals.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/10/1.4962509.html;jsessionid=Pyqf17NAb6CcCfi2nW0MtA4Z.x-aip-live-03?itemId=/content/aip/journal/jap/120/10/10.1063/1.4962509&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/10/10.1063/1.4962509&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/10/10.1063/1.4962509'
Right1,Right2,Right3,