Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. D. Livingston, see for GE R&D Center Report (1969–1970).
J. L. Wang, R. Zeng, J. H. Kim, L. Lu, and S. X. Dou, Phys. Rev. B 77, 174501 (2008).
D. Dew-Hughes, Philos. Mag. 30, 293 (1974).
M. J. Qin, X. L. Wang, H. K. Liu, and S. X. Dou, Phys. Rev. B 65, 132508 (2002).
T. Higuchi, S. I. Yoo, and M. Murakami, Phys. Rev. B 59, 1514 (1999).
M. Panek, D. Pattanayak, R. Meier-Hirmer, and H. Kupfer, J. App. Phys. 54, 7083 (1983).
Z. Ma, Y. Liu, J. Huo, and Z. Gao, J. Appl. Phys. 106, 113911 (2009).
B. Dam, J. M. Huijbregtse, F. C. Klaassen, R. C. F. van der Geest, G. Doornbos, J. H. Rector, A. M. Testa, S. Freisem, J. C. Martinez, B. Stauble-Pumpin, and R. Griessen, Nature 399, 439 (1999).
S. R. Ghorbani, X. L. Wang, S. X. Dou, S.-I. Lee, and M. S. A. Hossain, Phys. Rev. B 78, 184502 (2008).
A. Motaman, M. S. A. Hossain, X. Xu, K. W. See, K. C. Chung, and S. X. Dou, Supercond. Sci. Technol. 26, 085013 (2013).
S. R. Ghorbani, X. L. Wang, M. S. A. Hossain, S. X. Dou, and S.-I. Lee, Supercond. Sci. Technol. 23, 025019 (2010).
F. X. Xiang, X. L. Wang, X. Xun, K. S. B. De Silva, Y. X. Wang, and S. X. Dou, Appl. Phys. Lett. 102, 152601 (2013).
S. R. Ghorbani, M. Hosseinzadeh, and X. L. Wang, Supercond. Sci. Technol. 28, 125006 (2015).
R. Flukiger, M. S. A. Hossain, and C. Senatore, Supercond. Sci. Technol. 22, 085002 (2009).
V. A. Beloshenko, T. Konstantinova, N. I. Matrosov, V. Z. Spuskanyuk, V. Chishko, D. Gajda, A. J. Zaleski, V. P. Dyakonov, R. Puzniak, and H. Szymczak, J. Supercond. Novel Mag. 22, 505 (2009).
S. M. Kazakov, R. Puzniak, K. Rogacki, A. V. Mironov, N. D. Zhigadlo, J. Jun, Ch. Soltmann, B. Batlogg, and J. Karpinski, Phys. Rev. B 71, 024533 (2005).
A. Jung, S. I. Schlachter, B. Runtsch, B. Ringsdorf, H. Fillinger, H. Orschulko, A. Drechsler, and W. Goldacker, Supercond. Sci. Technol. 23, 095006 (2010).
A. Serquis, L. Civale, D. L. Hammon, X. Z. Liao, J. Y. Coulter, Y. T. Zhu, M. Jaime, D. E. Peterson, F. M. Mueller, V. F. Nesterenko, and Y. Gu, Appl. Phys. Lett. 82, 2847 (2003).
D. Gajda, A. Morawski, A. J. Zaleski, W. Häßler, K. Nenkov, M. A. Rindfleisch, T. Cetner, and M. Tomsic, J. Mater. Sci. Eng. 5(3), 1000244 (2016).
M. Tomsic, M. Rindflesich, J. Yue, K. McFadden, J. Phillips, M. D. Sumption, M. Bhatia, S. Bohnenstiehl, and E. W. Collings, Int. J. Appl. Ceram. Technol. 4, 250 (2007).
D. Gajda, A. Morawski, A. Zaleski, T. Cetner, M. Małecka, A. Presz, M. Rindfleisch, M. Tomsic, C. J. Thong, and P. Surdacki, Supercond. Sci. Technol. 26, 115002 (2013).
W. Haßler, M. Herrmann, C. Rodig, M. Schubert, K. Nenkov, and B. Holzapfel, Supercond. Sci. Technol. 21, 062001 (2008).
D. Gajda, A. Morawski, A. Zaleski, M. Kurnatowska, T. Cetner, G. Gajda, A. Presz, M. Rindfleisch, and M. Tomsic, Supercond. Sci. Technol. 28, 015002 (2015).
D. Gajda, A. Morawski, A. Zaleski, A. Yamamoto, and T. Cetner, Appl. Phys. Lett. 108, 152601 (2016).
M. Monteverde, M. Nunez-Regueiro, N. Rogado, K. A. Regan, M. A. Hayward, T. He, S. M. Loureiro, and R. J. Cava, Science 292, 7577 (2001).
B. Lorenz, R. L. Meng, and C. W. Chu, Phys. Rev. B 64, 12507 (2001).
P. Bordet, M. Mezouar, M. Nunez-Regueiro, M. Monteverde, M. D. Nunez-Regueiro, N. Rogado, A. Regan, M. A. Hayward, T. He, S. M. Loureiro, and R. J. Cava, Phys. Rev. B 64, 172502 (2001).
A. Serquis, Y. T. Zhu, E. J. Peterson, J. Y. Coulter, D. E. Peterson, and F. M. Mueller, Appl. Phys. Lett. 79, 43994401 (2001).
C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115R146 (2001).
M. Mudgel, L. S. Sharath Chandra, V. Ganesan, G. L. Bhalla, H. Kishan, and V. P. S. Awana, J. Appl. Phys. 106, 033904 (2009).
M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys ( ASM International, Materials Park, OH, 1999).
Z. X. Shi, M. A. Susner, M. Majoros, M. D. Sumption, X. Peng, M. Rindfleisch, M. J. Tomsic, and E. W. Collings, Supercond. Sci. Technol. 23, 045018 (2010).
X. Xu, S. X. Dou, X. L. Wang, J. H. Kim, J. A. Stride, M. Choucair, W. K. Yeoh, R. K. Zheng, and S. P. Ringer, Supercond. Sci. Technol. 23, 085003 (2010).
L. Embon, Y. Anahory, A. Suhov, D. Halbertal, J. Cuppens, A. Yakovenko, A. Uri, Y. Myasoedov, M. L. Rappaport, M. E. Huber, A. Gurevich, and E. Zeldov, Sci. Rep. 5, 7598 (2015).

Data & Media loading...


Article metrics loading...



High field pinning centers in MgB doped with 2 at. % carbon under a low and a high hot isostatic pressures have been investigated by transport measurements. The field dependence of the transport critical current density was analyzed within the different pinning mechanisms: surface pinning, point pinning, and pinning due to spatial variation in the Ginzburg-Landau parameter (Δ pinning). Research indicates that a pressure of 1 GPa allows similar pinning centers to Δ pinning centers to be obtained. This pinning is very important, because it makes it possible to increase the critical current density in high magnetic fields at 20 K and 25 K. Our results indicate that the and pinning mechanisms, which are due to a spatial variation in the critical temperature ( ) and the mean free path, , respectively, create dislocations. The high density of dislocations with inhomogeneous distribution in the structure of the superconducting material creates the pinning mechanism. The low density of dislocations with inhomogeneous distribution creates the pinning mechanism. Research indicates that the hot isostatic pressure process makes it possible to obtain a high dislocation density with a homogeneous distribution. This allows us to obtain the pinning mechanism in MgB wires. In addition, a high pressure increases the crossover field from the single vortex to the small vortex bundle regime ( ) and improves the pinning mechanism. Our research has proved that a high pressure significantly increases the crossover field from the small bundle to the thermal regime ( ), with only a modest decrease in of 1.5 K, decreases the thermal fluctuations, increases the irreversibility magnetic field ( ) and the upper critical field ( ) in the temperature range from 4.2 K to 25 K, and reduces and above 25 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd