Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. D. Ponce Wong, J. D. Posner, and V. J. Santos, Sens. Actuators, A 179, 62 (2012).
H. C. Ko, M. P. Stoykovich, J. Z. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. L. Xiao, S. D. Wang, Y. G. Huang, and J. A. Rogers, Nature 454, 748 (2008).
D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, and J. A. Rogers, Science 333, 838 (2011).
S. Scataglini, G. Andreoni, and J. Gallant, in A Review of Smart Clothing in Military ( ACM, 2015), p. 53.
N. M. Farandos, A. K. Yetisen, M. J. Monteiro, C. R. Lowe, and S. H. Yun, Adv. Healthcare Mater. 4, 792810 (2015).
B. C. K. Tee, A. Chortos, R. R. Dunn, G. Schwartz, E. Eason, and Z. Bao, Adv. Funct. Mater. 24, 5427 (2014).
Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, and M. McCreary, Nature 423, 136 (2003).
G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. Van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. Van Rens, and D. M. De Leeuw, Nat. Mater. 3, 106 (2004).
B. Yoon, D. Y. Ham, O. Yarimaga, H. An, C. W. Lee, and J. M. Kim, Adv. Mater. 23, 5492 (2011).
E. Kim, H. Tu, C. Lv, H. Jiang, H. Yu, and Y. Xu, Appl. Phys. Lett. 102, 033506 (2013).
J. A. Rogers, T. Someya, and Y. Huang, Science 327, 1603 (2010).
T. Someya, Stretchable Electronics ( John Wiley and Sons, 2012).
S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, Proc. IEEE 93, 1459 (2005).
H. Yung-Yu, K. Lucas, D. Davis, B. Elolampi, R. Ghaffari, C. Rafferty, and K. Dowling, IEEE Trans. Electron Devices 60, 2338 (2013).
Y.-Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, and I. De Wolf, J. Micromech. Microeng. 20, 075036 (2010).
R. Taylor, C. Boyce, M. Boyce, and B. Pruitt, J. Micromech. Microeng. 23, 105004 (2013).
Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J. A. Fan, K.-C. Hwang, J. A. Rogers, and Y. Huang, Acta Mater. 61, 7816 (2013).
Y. Zhang, S. Wang, X. Li, J. A. Fan, S. Xu, Y. M. Song, K. J. Choi, W. H. Yeo, W. Lee, and S. N. Nazaar, Adv. Funct. Mater. 24, 2028 (2014).
O. V. D. Sluis, Y. Y. Hsu, P. H. M. Timmermans, M. Gonzalez, and J. P. M. Hoefnagels, J. Phys. D: Appl. Phys. 44, 034008 (2011).
M. Jablonski, F. Bossuyt, J. Vanfleteren, T. Vervust, and H. de Vries, Microelectron. Reliab. 53, 956 (2013).
M. Gonzalez, B. Vandevelde, W. Christiaens, Y.-Y. Hsu, F. Iker, F. Bossuyt, J. Vanfleteren, O. Van der Sluis, and P. Timmermans, Microelectron. Reliab. 51, 1069 (2011).
S. Béfahy, S. Yunus, T. Pardoen, P. Bertrand, and M. Troosters, Appl. Phys. Lett. 91, 141911 (2007).
D.-Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, Science 311, 208 (2006).
C. Lv, H. Yu, and H. Jiang, Extreme Mech. Lett. 1, 2934 (2014).
H. Yung-Yu, P. Cole, L. Daniel, W. Xianyan, R. Milan, Z. Baosheng, and G. Roozbeh, J. Micromech. Microeng. 24, 095014 (2014).
S. Wagner and S. Bauer, MRS Bull. 37, 207 (2012).
C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication ( John Wiley and Sons, 2008).
T. Li, Z. Huang, Z. Xi, S. P. Lacour, S. Wagner, and Z. Suo, Mech. Mater. 37, 261 (2005).
N. Lu, X. Wang, Z. Suo, and J. Vlassak, Appl. Phys. Lett. 91, 221909 (2007).
T. Li and Z. Suo, Int. J. Solids Struct. 43, 2351 (2006).
C. Tsay, S. P. Lacour, S. Wagner, T. Li, and Z. Suo, in How Stretchable Can We Make Thin Metal Films? ( Cambridge University Press, 2005), p. O5.5.
Y. Xiang, T. Li, Z. Suo, and J. J. Vlassak, Appl. Phys. Lett. 87, 161910 (2005).
J. Jones, S. P. Lacour, S. Wagner, and Z. Suo, J. Vacuum Sci. Technol. A 22, 1723 (2004).
O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, and W. O. Soboyejo, Mater. Sci. Eng. B 170, 32 (2010).
H. Vandeparre, Q. Liu, I. R. Minev, Z. Suo, and S. P. Lacour, Adv. Mater. 25, 3117 (2013).
Y. Arafat, I. Dutta, and R. Panat, Appl. Phys. Lett. 107, 081906 (2015).
T. Ye, Z. Suo, and A. Evans, Int. J. Solids Struct. 29, 2639 (1992).
V. M. Marx, F. Toth, A. Wiesinger, J. Berger, C. Kirchlechner, M. J. Cordill, F. D. Fischer, F. G. Rammerstorfer, and G. Dehm, Acta Mater. 89, 278 (2015).
R. Mahajan, P. Brofman, R. Alapati, C. Hilbert, L. Nguyen, K. Maekawa, M. Varughese, D. O'Connor, S. Ramaswami, and J. Candelaria, Packaging Needs Document (Semiconductor Research Corporation (SRC), 2015), available at
S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, J. Biomed. Mater. Res. Part A 72A, 10 (2005).
D. Bodas and C. Khan-Malek, Sens. Actuators, B 123, 368 (2007).
J. Blaber, B. Adair, and A. Antoniou, Exp. Mech. 55, 1105 (2015).
R. Harilal and M. Ramji, “ Adaptation of open source 2D DIC software Ncorr for solid mechanics applications,” in Proceedings of the 9th International Symposium on Advanced Science and Technology in Experimental Mechanics, 1–6 November 2014, New Delhi, India.
J. Blaber and A. Antoniou, “ Ncorr instruction manual,” see (2015).
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012).
M. D. Abramoff, P. J. Magalhães, and S. J. Ram, Biophotonics Int. 11, 36 (2004).
R. Fogelholm, Ö. Rapp, and G. Grimvall, Phys. Rev. B 23, 3845 (1981).
K. E. Petersen and C. R. Guarnieri, J. Appl. Phys. 50, 6761 (1979).
Z. Wang, A. A. Volinsky, and N. D. Gallant, J. Appl. Polym. Sci. 131, 41050 (2014).

Data & Media loading...


Article metrics loading...



Flexible metallic interconnects are highly important in the emerging field of deformable/wearable electronics. In our previous work [Arafat ., Appl. Phys. Lett. , 081906 (2015)], interconnect films of Indium metal, periodically bonded to an elastomer substrate using a thin discontinuous/cracked adhesion interlayer of Cr, were shown to sustain a linear strain of 80%–100% without failure during repeated cycling. In this paper, we investigate the mechanisms that allow such films to be stretched to a large strain without rupture along with strategies to prevent a deterioration in their electrical performance under high linear strain. Scanning Electron Microscopy and Digital Image Correlation are used to map the strain field of the Cr adhesion interlayer and the In interconnect film when the elastomer substrate is stretched. It is shown that the Cr interlayer morphology, consisting of islands separated by bi-axial cracks, accommodates the strain primarily by widening of the cracks between the islands along the tensile direction. This behavior is shown to cause the strain in the In interconnect film to be discontinuous and concentrated in bands perpendicular to the loading direction. This localization of strain at numerous periodically spaced locations preempts strain-localization at one location and makes the In film highly stretchable by delaying rupture. Finally, the elastic-plastic mismatch-driven wrinkling of the In interconnect upon release from first loading cycle is utilized to delay the onset of plasticity and allow the interconnect to be stretched repeatedly up to 25% linear strain in subsequent cycles without a deterioration of its electrical performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd