Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/11/10.1063/1.4962456
1.
G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
http://dx.doi.org/10.1063/1.1388868
2.
C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, Supercond. Sci. Technol. 25, 063001 (2012).
http://dx.doi.org/10.1088/0953-2048/25/6/063001
3.
V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, Opt. Express 16, 10750 (2008).
http://dx.doi.org/10.1364/OE.16.010750
4.
M. G. Tanner, C. M. Natarajan, V. K. Pottapenjara, J. A. O'Connor, R. J. Warburton, R. H. Hadfield, B. Baek, S. W. Nam, S. N. Dorenbos, E. B. Ureña et al., Appl. Phys. Lett. 96, 221109 (2010).
http://dx.doi.org/10.1063/1.3428960
5.
F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, Nat. Photonics 7, 210 (2013).
http://dx.doi.org/10.1038/nphoton.2013.13
6.
A. Gaggero, S. J. Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. Hamhuis, R. Nötzel, R. Sanjines, and A. Fiore, Appl. Phys. Lett. 97, 151108 (2010).
http://dx.doi.org/10.1063/1.3496457
7.
K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol'tsman, and K. K. Berggren, Opt. Express 14, 527 (2006).
http://dx.doi.org/10.1364/OPEX.14.000527
8.
S. Miki, T. Yamashita, H. Terai, and Z. Wang, Opt. Express 21, 10208 (2013).
http://dx.doi.org/10.1364/OE.21.010208
9.
S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, Opt. Express 17, 23557 (2009).
http://dx.doi.org/10.1364/OE.17.023557
10.
R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, J. Appl. Phys. 110, 053107 (2011).
http://dx.doi.org/10.1063/1.3632057
11.
L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Phys. Rev. Lett. 115, 250402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.250402
12.
T. Steinmetz, Y. Colombe, D. Hunger, T. W. Hänsch, A. Balocchi, R. J. Warburton, and J. Reichel, Appl. Phys. Lett. 89, 111110 (2006).
http://dx.doi.org/10.1063/1.2347892
13.
M. G. Tanner, L. San Emeterio Alvarez, W. Jiang, R. J. Warburton, Z. H. Barber, and R. H. Hadfield, Nanotechnology 23, 505201 (2012).
http://dx.doi.org/10.1088/0957-4484/23/50/505201
14.
J. A. O'Connor, M. G. Tanner, C. M. Natarajan, G. S. Buller, R. J. Warburton, S. Miki, Z. Wang, S. W. Nam, and R. H. Hadfield, Appl. Phys. Lett. 98, 201116 (2011).
http://dx.doi.org/10.1063/1.3581054
15.
R. M. Heath, M. G. Tanner, A. Casaburi, M. G. Webster, L. San Emeterio Alvarez, W. Jiang, Z. H. Barber, R. J. Warburton, and R. H. Hadfield, Appl. Phys. Lett. 104, 063503 (2014).
http://dx.doi.org/10.1063/1.4865199
16.
R. M. Heath, M. G. Tanner, T. D. Drysdale, S. Miki, V. Giannini, S. A. Maier, and R. H. Hadfield, Nano Lett. 15, 819 (2015).
http://dx.doi.org/10.1021/nl503055a
17.
R. A. Kirkwood, “ Superconducting single photon detectors for quantum information processing,” Ph.D. thesis, University of Glasgow, to be defended in 2016.
18.
A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol'tsman, and B. M. Voronov, Appl. Phys. Lett. 90, 101110 (2007).
http://dx.doi.org/10.1063/1.2696926
19.
M. K. Akhlaghi, H. Atikian, J. F. Young, M. Loncar, and A. H. Majedi, in Proceedings of the 13th Numerical Simulation of Optoelectronic Devices (NUSOD 2013) (IEEE, 2013).
20.
S. N. Dorenbos, P. Forn-Diaz, T. Fuse, A. H. Verbruggen, T. Zijlstra, T. M. Klapwijk, and V. Zwiller, Appl. Phys. Lett. 98, 251102 (2011).
http://dx.doi.org/10.1063/1.3599712
21.
R. M. Heath, “ Nano-optical studies of superconducting nanowire devices for single-photon detection,” Ph.D. thesis, University of Glasgow, 2015.
22.
F. Najafi, F. Marsili, V. B. Verma, Q. Zhao, M. D. Shaw, K. K. Berggren, and S. W. Nam, in Superconducting Devices in Quantum Optics, edited by R. H. Hadfield and G. Johansson ( Springer, 2016), Chap. 1, p. 4.
23.
C. M. Natarajan, A. Peruzzo, S. Miki, M. Sasaki, Z. Wang, B. Baek, S. Nam, R. H. Hadfield, and J. L. O'Brien, Appl. Phys. Lett. 96, 211101 (2010).
http://dx.doi.org/10.1063/1.3413948
24.
N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. N. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, Opt. Express 21, 5005 (2013).
http://dx.doi.org/10.1364/OE.21.005005
25.
D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, Phys. Rev. Lett. 95, 013904 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.013904
26.
T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, Nat. Nanotechnol. 5, 195 (2010).
http://dx.doi.org/10.1038/nnano.2010.6
27.
D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, AIP Adv. 2, 012119 (2012).
http://dx.doi.org/10.1063/1.3679721
28.
L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, Appl. Phys. Lett. 105, 121105 (2014).
http://dx.doi.org/10.1063/1.4896415
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/11/10.1063/1.4962456
Loading
/content/aip/journal/jap/120/11/10.1063/1.4962456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/11/10.1063/1.4962456
2016-09-15
2016-12-05

Abstract

Maximizing photon absorption into thin active structures can be the limiting factor for photodetector efficiency. In this work, a fiber-coupled tunable cavity is demonstrated, designed to achieve close to unity absorption of photons into a thin film superconducting nanowire single photon detector (SNSPD). A technique for defining a stable cavity between the end of a telecommunications optical fiber and a reflective substrate is described and realized. Cavity resonances are demonstrated both through the tuning of input wavelength and cavity length. The resulting optical cavity can tune the resonant absorption over a wavelength range of 100 nm. This technique is used to maximize the single photon absorption into both a back-side-coupled Au mirror SNSPD and a front-side-coupled distributed Bragg reflector cavity SNSPD. The system detection efficiency (SDE) is limited by imperfections in the thin films, but in both cases we demonstrate an improvement of the SDE by 40% over bare fiber illumination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/11/1.4962456.html;jsessionid=0nLb6P74xGJZiSY_MIdkTNHh.x-aip-live-03?itemId=/content/aip/journal/jap/120/11/10.1063/1.4962456&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/11/10.1063/1.4962456&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/11/10.1063/1.4962456'
Right1,Right2,Right3,