Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/11/10.1063/1.4962459
1.
M. A. Green and K. Emery, “ Solar cell efficiency tables (version 47),” Prog. Photovoltaics: Res. Appl. 24(1), 311 (2016).
http://dx.doi.org/10.1002/pip.2728
2.
Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “ Organic photovoltaics: Plasmonic-enhanced organic photovoltaics: Breaking the 10% efficiency barrier,” Adv. Mater. 25(17), 23772377 (2013).
http://dx.doi.org/10.1002/adma.201370107
3.
S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, “ Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” J. Appl. Phys. 93, 073307 (2008).
4.
S.-W. Baek, J. Noh, C.-H. Lee, B. Kim, M.-K. Seo, and J.-Y. Lee, “ Plasmonic forward scattering effect in organic solar cells: A powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
http://dx.doi.org/10.1038/srep01726
5.
L. Lu, Z. Luo, T. Xu, and L. Yu, “ Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells,” Nano Lett. 13, 5964 (2013).
http://dx.doi.org/10.1021/nl3034398
6.
H. A. Atwater and A. Polman, “ Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205213 (2010).
http://dx.doi.org/10.1038/nmat2629
7.
F.-C. Chen, J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, “ Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles,” J. Appl. Phys. 95, 013305 (2009).
http://dx.doi.org/10.1063/1.3174914
8.
E. Hao and G. C. Schatz, “ Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357 (2004).
http://dx.doi.org/10.1063/1.1629280
9.
N. M. Lawandy, “ Localized surface plasmon singularities in amplifying media,” J. Appl. Phys. 85, 5040 (2004).
http://dx.doi.org/10.1063/1.1825058
10.
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “ The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668677 (2003).
http://dx.doi.org/10.1021/jp026731y
11.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Paperback Series ( Wiley, 1983).
12.
J.-Y. Lee and P. Peumans, “ The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 1007810087 (2010).
http://dx.doi.org/10.1364/OE.18.010078
13.
P. Spinelli and A. Polman, “ Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles,” Opt. Express 20(S5), A641A654 (2012).
http://dx.doi.org/10.1364/OE.20.00A641
14.
F. Guo, P. Kubis, T. Stubhan, N. Li, D. Baran, T. Przybilla, E. Spiecker, K. Forberich, and C. Brabec, “ Fully solution-processing route toward highly transparent polymer solar cells,” ACS Appl. Mater. Interfaces 6(20), 1825118257 (2014).
http://dx.doi.org/10.1021/am505347p
15.
K. Yee, “ Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14(3), 302307 (1966).
http://dx.doi.org/10.1109/TAP.1966.1138693
16.
C. Pflaum and Z. Rahimi, “ An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity,” Numer. Linear Algebra Appl. 18(4), 653670 (2011).
http://dx.doi.org/10.1002/nla.746
17.
S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. Brabec, “ Numerical simulation of light propagation in silver nanowire films using time-harmonic inverse iterative method,” Appl. Phys. Lett. 113(15), 154303 (2013).
http://dx.doi.org/10.1063/1.4801919
18.
Z. Rahimi, A. Erdmann, and C. Pflaum, “ Finite integration (FI) method for modelling optical waves in lithography masks,” in International Conference on Electromagnetics in Advanced Applications (ICEAA'09) (2009), pp. 809812.
19.
L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “ Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” Appl. Phys. Lett. 86(1), 487496 (1999).
http://dx.doi.org/10.1063/1.370757
20.
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters ( Springer, 1995), Vol. 3.
21.
B. P. Rand, P. Peumans, and S. R. Forrest, “ Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 75197526 (2004).
http://dx.doi.org/10.1063/1.1812589
22.
J.-P. Berenger, “ Perfectly matched layer for the FDTD solution of wave-structure interaction problems,” IEEE Trans. Antennas Propag. 44(1), 110117 (1996).
http://dx.doi.org/10.1109/8.477535
23.
H. Choi, J.-P. Lee, S.-J. Ko, J.-W. Jung, H. Park, S. Yoo, O. Park, J.-R. Jeong, S. Park, and J. Y. Kim, “ Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells,” Nano Lett. 13(5), 22042208 (2013).
http://dx.doi.org/10.1021/nl400730z
24.
A. Čampa, see http://lpvo.fe.uni-lj.si/en/software/nika/ for “NIKA software” (last accessed June 2016).
25.
S. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “ The effect of particle vertical positioning on the absorption enhancement in plasmonic organic solar cells,” J. Appl. Phys. 111, 124301 (2012).
http://dx.doi.org/10.1063/1.4729293
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/11/10.1063/1.4962459
Loading
/content/aip/journal/jap/120/11/10.1063/1.4962459
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/11/10.1063/1.4962459
2016-09-15
2016-09-28

Abstract

We are studying the influence of spherical silver nanoparticles (AgNP) in absorbing media by numerically solving the Maxwell's equations. Our simulations show that the near-field absorption enhancement introduced by a single AgNP in the surrounding medium is increasing with the growing particle diameter. However, we observe that the relative absorption per particle volume is on a similar level for different particle sizes; hence, different numbers of particles with the same total volume yield the same near-field absorption enhancement. We also investigate the effect of non-absorbing shells around the AgNP with the conclusion that even very thin shells suppress the beneficial effects of the particles noticeably. Additionally, we include AgNP in an organic solar cell at different vertical positions with different particle spacings and observe the beneficial effects for small AgNP and the scattering dependent performance for larger particles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/11/1.4962459.html;jsessionid=mmchSC3HzGLgKLgD1GAEqK7w.x-aip-live-02?itemId=/content/aip/journal/jap/120/11/10.1063/1.4962459&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/11/10.1063/1.4962459&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/11/10.1063/1.4962459'
Right1,Right2,Right3,