Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Louis, H. J. Voorma, N. B. Koster, L. Shmaenok, F. Bijkerk, R. Schlatmann, J. Verhoeven, Y. Y. Platonov, G. E. van Dorssen, and H. A. Padmore, Microelectron. Eng. 23(1–4), 215218 (1994).
I. Nedelcu, R. W. E. van de Kruijs, A. E. Yakshin, F. Tichelaar, E. Zoethout, E. Louis, H. Enkisch, S. Muellender, and F. Bijkerk, Thin Solid Films 515(2), 434438 (2006).
R. Schlatmann, C. Lu, J. Verhoeven, E. J. Puik, and M. J. van der Wiel, Appl. Surf. Sci. 78(2), 147157 (1994).
E. Louis, E. D. V. Hattum, S. A. V. D. Westen, P. Salle, K. T. Grootkarzijn, E. Zoethout, F. Bijkerk, G. V. Blanckenhagen, and S. Mullender, Proc. SPIE 7636, 76362T (2010).
E. Louis, A. E. Yakshin, T. Tsarfati, and F. Bijkerk, Prog. Surf. Sci. 86(11–12), 255294 (2011).
K. Le Guen, H. Maury, J. M. André, H. Wang, J. Zhu, Z. Wang, and P. Jonnard, Appl. Surf. Sci. 253(20), 84438446 (2007).
I. Nedelcu, R. W. E. van de Kruijs, A. E. Yakshin, and F. Bijkerk, Phys. Rev. B 76(24), 245404 (2007).
R. S. Rosen, D. G. Stearns, M. A. Viliardos, M. E. Kassner, S. P. Vernon, and Y. D. Cheng, Appl. Opt. 32(34), 69756980 (1993).
H. J. Voorma, E. Louis, F. Bijkerk, and S. Abdali, J. Appl. Phys. 82(4), 18761881 (1997).
H. J. Voorma, E. Louis, N. B. Koster, and F. Bijkerk, J. Appl. Phys. 83(9), 47004708 (1998).
A. J. R. van den Boogaard, E. Zoethout, I. A. Makhotkin, E. Louis, and F. Bijkerk, J. Appl. Phys. 112(12), 123502 (2012).
E. Zoethout, E. Louis, and F. Bijkerk, Appl. Surf. Sci. 285, 293299 (2013).
J. M. Slaughter, A. Shapiro, P. A. Kearney, and C. M. Falco, Phys. Rev. B 44(8), 38543863 (1991).
P. J. Bedrossian, Surf. Sci. 322(1–3), 7382 (1995).
H. R. Kaufman, Fundamentals of Ion-Source Operation ( Alexandria, Virginia, USA, 1984).
J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8(2), 129137 (1976).
P. J. Cumpson and M. P. Seah, Surf. Interface Anal. 25(6), 430446 (1997).<430::AID-SIA254>3.0.CO;2-7
J. P. Chang, M. L. Green, V. M. Donnelly, R. L. Opila, J. J. Eng, J. Sapjeta, P. J. Silverman, B. Weir, H. C. Lu, T. Gustafsson, and E. Garfunkel, J. Appl. Phys. 87(9), 44494455 (2000).
R. Q. Tan, Y. Azuma, T. Fujimoto, J. W. Fan, and I. Kojima, Surf. Interface Anal. 36(8), 10071010 (2004).
E. Zoethout, Surf. Interface Anal. 46(10–11), 10471050 (2014).
P. J. Cumpson, J. Electron Spectrosc. Relat. Phenomena 73(1), 2552 (1995).
D. Briggs and J. T. Grant, Surface Analysis by Auger and X-ray Photoelectron Spectroscopy ( IMPublications and SurfaceSpectra, Chichester, UK, 2003).
R. B. F. R. de Boer, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals ( North-Holland, 1988).
W. F. S. J. F. Moulder, P. E. Sobol, and K. D. Bomben, Handbook of x-Ray Photoelectron Spectroscopy ( Perkin-Elmer Corporation Physical Electronics, Eden Prairie, 1992).
C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen, and J. A. Taylor, J. Vac. Sci. Amp. Technol. 21(4), 933944 (1982).
W. F. Egelhoff, Surf. Sci. Rep. 6, 253415 (1987).
P. L. J. Gunter, O. L. J. Gijzeman, and J. W. Niemantsverdriet, Appl. Surf. Sci. 115(4), 342346 (1997).
P. Kappen, K. Reihs, C. Seidel, M. Voetz, and H. Fuchs, Surf. Sci. 465(1–2), 4050 (2000).
K. Olejnik, J. Zemek, and W. S. M. Werner, Surf. Sci. 595(1–3), 212222 (2005).
W. S. M. Werner, Surf. Interface Anal. 23(10), 696704 (1995).
V. Fokkema, Ph.D. thesis ( Leiden University, Universiteit Leiden, 2011).
D. L. Windt, Comput. Phys. 12(4), 360370 (1998).

Data & Media loading...


Article metrics loading...



Angle resolved x-ray photoelectron spectroscopy (ARXPS) has been employed to determine non-destructively the in-depth interface formation during thin film growth. Buried interfaces underneath the nanometer thick layers are probed by identifying the chemical shift of compound materials in photoelectron spectroscopy and using the angular response to quantify the compound amounts from the measured intensities. The thin interfaces in molybdenum-silicon multilayers grown at ambient temperature are investigated. This system is an example of an almost perfect 1D-system, where the interface region is only a small part of the individual layer thicknesses of 3 to 5 nm. Despite the low growth temperature, both the interfaces of this multilayer show layer thickness dependent interface formation. While the silicon-on-molybdenum interface shows a limited interface thickness of 0.4 nm of Mo Si, the molybdenum-on-silicon interface shows a more complex evolution. For this interface, the composition of the first 2.0 nm of deposited layer thickness is best described as a molybdenum-silicon compound layer with a molybdenum rich top and a MoSi bottom layer. After 2.5 nm of the deposited layer thickness, the molybdenum rich compound at the top has transformed into polycrystalline molybdenum on top of 1.8 nm MoSi at the interface. The formation of the 1.8 nm MoSi precedes the formation of polycrystalline molybdenum on top. Angle resolved x-ray photoelectron spectroscopy (ARXPS) is shown to be a good tool to study the interface phenomena beneath the nanometer thick top layers. In the case of Mo/Si multilayer mirrors, this ARXPS study shows that the compound formation at the interface accounts for the majority of the extreme ultraviolet reflectance loss.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd