Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. P. Bergman, H. Lendenmann, P. A. Nilsson, U. Lindefelt, and P. Skytt, Mater Sci. Forum 353–356, 299 (2001).
M. Skowronski and S. Ha, J. Appl. Phys. 99, 011101 (2006).
J. D. Caldwell, R. E. Stahlbush, M. G. Ancona, O. J. Glembocki, and K. D. Hobart, J. Appl. Phys. 108, 044503 (2010).
A. Agarwal, H. Fatima, S. Haney, and S.-H. Ryu, IEEE Electron Device Lett. 28, 587 (2007).
T. Ohno, H. Yamaguchi, S. Kuroda, K. Kojima, T. Suzuki, and K. Arai, J. Cryst. Growth 271, 1 (2004).
R. E. Stahlbush, B. L. VanMil, R. L. Myers-Ward, K-K. Lew, D. K. Gaskill, and C. R. Eddy, Jr., Appl. Phys. Lett. 94, 041916 (2009).
H. Tsuchida, T. Miyanagi, I. Kamata, T. Nakamura, K. Izumi, K. Nakayama, R. Ishii, K. Asano, and Y. Sugawara, Mater Sci. Forum 483–485, 97 (2005).
W. Chen and M. A. Capano, J. Appl. Phys. 98, 114907 (2005).
Z. Zhang and T. S. Sudarshan, Appl. Phys. Lett. 87, 151913 (2005).
K. Konishi, S. Yamamoto, S. Nakata, Y. Nakamura, Y. Nakanishi, T. Tanaka, Y. Mitani, N. Tomita, Y. Toyoda, and S. Yamakawa, J. Appl. Phys. 114, 014504 (2013).
N. A. Mahadik, R. E. Stahlbush, M. G. Ancona, E. A. Lmhoff, K. D. Hobart, R. L. Myers-Ward, C. R. Eddy, Jr., D. K. Gaskill, and F. J. Kub, Appl. Phys. Lett. 100, 042102 (2012).
J. J. Sumakeris, M. Das, H. M. Hobgood, S. G. Müller, M. J. Paisley, S. Ha, M. Skowronski, J. W. Palmour, and C. H. Carter, Jr., Mater. Sci. Forum 457–460, 1113 (2004).
K. Maeda, R. Hirano, Y. Sato, and M. Tajima, Mater. Sci. Forum 725, 35 (2012).
K. Maeda, in Materials and Reliability Handbook for Semiconductor Optical and Electronic Devices, edited by O. Ueda and S. Pearton ( Springer, Berlin, 2012), Chap. 9.
P. B. Klein, Appl. Phys. Lett. 103, 033702 (2008).
T. Kimoto, K. Danno, and J. Suda, Phys. Status Solidi B 245, 1327 (2008).
T. Tawara, H. Tsuchida, S. Izumi, I. Kamata, and K. Izumi, Mater. Sci. Forum 457–460, 565 (2004).
T. Miyazawa, M. Ito, and H. Tsuchida, Appl. Phys. Lett. 97, 202106 (2010).
K. Kawahara, J. Suda, and T. Kimoto, J. Appl. Phys. 111, 053710 (2012).
T. Miyazawa and H. Tsuchida, ECS J. Sol. State Sci. Technol. 2(8), N3036 (2013).
T. Miyazawa and H. Tsuchida, J. Appl. Phys. 113, 083714 (2013).
O. Kordina, J. P. Bergman, C. Hallin, and E. Janzén, Appl. Phys. Lett. 69, 679 (1996).
T. Kimoto, in Fundamentals of Silicon Carbide Technology, edited by T. Kimoto, and J. A. Cooper ( Wiley, Singapore, 2014), Chap. 2.
A. Galeckas, J. Linnros, V. Grivickas, U. Lindefelt, and C. Hallin, Appl. Phys. Lett. 71, 3269 (1997).
L. Storasta, J. P. Bergman, E. Janzen, and A. Henry, J. Appl. Phys. 96, 4909 (2004).
R. Tanuma, D. Mori, I. Kamata, and H. Tsuchida, Appl. Phys. Express 5, 061301 (2012).
A. Tanaka, H. Matsuhata, N. Kawabata, D. Mori, K. Inoue, M. Ryo, T. Fujimoto, T. Tawara, M. Miyazato, M. Miyajima, K. Fukuda, A. Ohtsuki, T. Tomohisa, H. Tsuchida, Y. Yonezawa, and T. Kimoto, J. Appl. Phys. 119, 095711 (2016).

Data & Media loading...


Article metrics loading...



We investigated the dependency of minority carrier lifetimes on the nitrogen concentration, temperature, and the injected carrier concentration for highly nitrogen-doped 4H-SiC epilayers. The minority carrier lifetimes greatly shortened when the nitrogen concentration exceeded 1018 cm−3 through enhancing direct band-to-band and Auger recombination and showed a slight variation in the temperature range from room temperature (RT) to 250 °C. The epilayer with a nitrogen concentration of 9.3 × 1018 cm−3 exhibited a very short minority carrier lifetime of 38 ns at RT and 43 ns at 250 °C. The short minority carrier lifetimes of the highly nitrogen-doped epilayer were confirmed to maintain the values even after the subsequent annealing of 1700 °C. 4H-SiC PiN diodes were fabricated by depositing a highly nitrogen-doped epilayer as a “recombination enhancing layer” between an n drift layer free from basal plane dislocations and the substrate. The PiN diodes showed no formation of stacking faults and no increase in forward voltage during current conduction of 600 A/cm2 (DC), demonstrating that a highly nitrogen-doped buffer layer with a short minority carrier lifetime successfully suppresses the “bipolar degradation” phenomenon.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd