Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/11/10.1063/1.4962718
1.
P. W. Bridgman and I. Simon, J. Appl. Phys. 24, 405 (1953).
http://dx.doi.org/10.1063/1.1721294
2.
J. D. Mackenzie, J. Am. Ceram. Soc. 10, 461470 (1963).
http://dx.doi.org/10.1111/j.1151-2916.1963.tb13776.x
3.
Y. Inamura, Y. Katayama, W. Utsumi, and K. I. Funakoshi, Phys. Rev. Lett. 93, 015501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.015501
4.
K. Trachenko and M. T. Dove, Phys. Rev. B. 67, 064107 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.064107
5.
K. Trachenko, M. T. Dove, V. Brazhkin, and F. S. El'kin, Phys. Rev. Lett. 93, 135502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135502
6.
G. Shen, H. Liermann, S. Sinogeikin, W. Yang, X. Hong, C. Yoo, and H. Cynn, PNAS 104, 14576 (2007).
http://dx.doi.org/10.1073/pnas.0703098104
7.
S. Klotz, J.-C. Chervin, P. Munsch, and G. Le Marchand, J. Phys. D: App. Phys. 42, 075413 (2009).
http://dx.doi.org/10.1088/0022-3727/42/7/075413
8.
J. C. Chervin, B. Canny, and M. Mancinelli, High Pressure Res. 21, 305314 (2001).
http://dx.doi.org/10.1080/08957950108202589
9.
C. Sanchez-Valle, I. Daniel, B. Reynard, R. Abraham, and C. Goutaudier, J. Appl. Phys. 92, 4349 (2002).
http://dx.doi.org/10.1063/1.1509843
10.
N. J. Hess and G. J. Hexharhos, High Pressure Res. 2, 57 (1989).
http://dx.doi.org/10.1080/08957958908201032
11.
N. J. Hess and D. Schiferl, J. Appl. Phys. 68, 19531960 (1990).
http://dx.doi.org/10.1063/1.346593
12.
J. Lam, A. Chemin, C. Martinet, A. Cornet, K. Lebbou, C. Dujardin, G. Ledoux, F. Chaput, B. Gökce, S. Barcikowski, and D. Amans, “Statement about pressure in nanoparticles,” Light: Science & Applications (unpublished).
13.
L. Giacomazzi, P. Umari, and A. Pasquarello, Phys. Rev. Lett. 95, 075505 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.075505
14.
M. Micoulaut, L. Cormier, and G. S. Henderson, J. Phys.: Condens. Matter 18, 753784 (2006).
http://dx.doi.org/10.1088/0953-8984/18/45/R01
15.
P. N. Sen and M. F. Thorpe, Phys. Rev. B. 15, 4030 (1977).
http://dx.doi.org/10.1103/PhysRevB.15.4030
16.
P. McMillan, B. Piriou, and R. Couty, J. Chem. Phys. 81, 42344236 (1984).
http://dx.doi.org/10.1063/1.447455
17.
D. J. Durben and G. H. Wolf, Phys. Rev. B 43, 23552362 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.2355
18.
T. Deschamps, Ph.D. thesis, Université Claude Bernard Lyon 1, 2009.
19.
J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, and C. T. Moynihan, J. Non-Cryst. Solids 349, 8897 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.08.265
20.
R. J. Hemley, C. Meade, and H. Ho-Kwang, Phys. Rev. Lett. 79, 1420 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1420
21.
P. S. Salmon and A. Zeidler, J. Phys.: Condens. Matter 27, 133201 (2015).
http://dx.doi.org/10.1088/0953-8984/27/13/133201
22.
L. Huang and J. Kieffer, Phys. Rev. B 69, 224204 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.224204
23.
C. Martinet, A. Kassir-Bodon, T. Deschamps, A. Cornet, S. Le Floch, V. Martinez, and B. Champagnon, J. Phys.: Condens. Matter 27, 325401 (2015).
http://dx.doi.org/10.1088/0953-8984/27/32/325401
24.
B. T. Poe, C. Romano, and G. Henderson, J. Non-Cryst. Solids 341, 162169 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.04.014
25.
C. E. Stone, A. C. Hanon, T. Ishihara, N. Kitamura, Y. Shirakawa, R. N. Sinclair, N. Umesaki, and A. C. Wright, J. Non-Cryst. Solids 293–295, 769775 (2001).
http://dx.doi.org/10.1016/S0022-3093(01)00851-1
26.
P. Richet, G. Hovis, and B. Poe, Chem. Geol. 213, 4147 (2004).
http://dx.doi.org/10.1016/j.chemgeo.2004.08.031
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/11/10.1063/1.4962718
Loading
/content/aip/journal/jap/120/11/10.1063/1.4962718
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/11/10.1063/1.4962718
2016-09-16
2016-10-01

Abstract

Vitreous GeO has been compressed at high temperature to investigate the effect of thermal activation on the structural reorganization during compression. The measurements were performed using micro Raman spectroscopy under pressure up to 6 GPa and temperature up to 400 °C. The evolution of the Raman shift of the main band (400–500 cm−1) with temperature during compression evidences a pressure window around 3 GPa within which temperature has a remarkable influence on the structure, in particular, the intermediate range order. We find that this change is well correlated with previous density measurements from high pressure-high temperature densifications. Moreover, coordination changes from tetrahedrally (GeO) to octahedrally (GeO) coordinated GeO are accelerated with the heating during the compression.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/11/1.4962718.html;jsessionid=pUSKUIgfZoKASiiexUU-T-YX.x-aip-live-03?itemId=/content/aip/journal/jap/120/11/10.1063/1.4962718&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/11/10.1063/1.4962718&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/11/10.1063/1.4962718'
Right1,Right2,Right3,