Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. A. Sinton, A. Cuevas, and M. Stuckings, “ Quasi-Steady-State Photoconductance, a New Method for Solar Cell Material and Device Characterization” in Proceedings of the IEEE 25th Photovoltaic Specialist Conferences (PVSC), Washington, 1996, p. 457.
D. Pysch, A. Mette, and S. W. Glunz, Sol. Energy Mater. Sol. Cells 91, 1698 (2007).
M. A. Green, Solid-State Electron. 24, 788 (1981).
A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. De Wolf, and C. Ballif, IEEE J. Photovoltaics 3, 83 (2013).
Z. Hameiri, K. McIntosh, and G. Xu, Sol. Energy Mater. Sol. Cells 117, 251 (2013).
X. Guo, N. Zhou, S. J. Lou, J. Smith, D. B. Tice, J. W. Hennek, R. P. Ortiz, J. T. L. Navarrete, S. Li, and J. Strzalka, Nat. Photonics 7, 825 (2013).
Z. Fu, W. Shen, R. He, X. Liu, H. Sun, W. Yin, and M. Li, Phys. Chem. Chem. Phys. 17, 2043 (2015).
S. Yoo, B. Domercq, and B. Kippelen, J. Appl. Phys. 97, 103706 (2005).
Z. Huang, G. Natu, Z. Ji, M. He, M. Yu, and Y. Wu, J. Phys. Chem. C 116, 26239 (2012).
K. J. Singh and S. K. Sarkar, Opt. Quantum Electron. 43, 1 (2012).
Y. Wang, A. Gerger, A. Lochtefeld, L. Wang, C. Kerestes, R. Opila, and A. Barnett, Sol. Energy Mater. Sol. Cells 108, 146 (2013).
S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, Green 2, 7 (2012).
D. Mbewe, H. Card, and D. Card, Sol. Energy 35, 247 (1985).
P. Loper, B. Niesen, S.-J. Moon, S. Martin de Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F.-J. Haug, J.-H. Yum, and S. De Wolf, IEEE J. Photovoltaics 4, 1545 (2014).
M. Diaz, L. Wang, D. Li, X. Zhao, B. Conrad, A. Soeriyadi, A. Gerger, A. Lochtefeld, C. Ebert, and R. Opila, Sol. Energy Mater. Sol. Cells 143, 113 (2015).
A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Phys. Rev. B 86, 165202 (2012).
W. Shockley and W. Read, Jr., Phys. Rev. 87, 835 (1952).
R. N. Hall, Phys. Rev. 87, 387 (1952).
A. Richter, M. Hermle, and S. W. Glunz, IEEE J. Photovoltaics 3, 1184 (2013).
T. Trupke, M. A. Green, P. Würfel, P. Altermatt, A. Wang, J. Zhao, and R. Corkish, J. Appl. Phys. 94, 4930 (2003).
P. Altermatt, F. Geelhaar, T. Trupke, X. Dai, A. Neisser, and E. Daub, Appl. Phys. Lett. 88, 261901 (2006).
A. Schenk, J. Appl. Phys. 84, 3684 (1998).
D. Yan and A. Cuevas, J. Appl. Phys. 114, 044508 (2013).
S. Rein, T. Rehrl, W. Warta, and S. Glunz, J. Appl. Phys. 91, 2059 (2002).
T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, IEEE Trans. Electron Devices 31, 711 (1984).
R. M. Swanson and R. A. Sinton, in Advances in Solar Energy, edited by K. A. Bouer ( American Solar Energy Society, Newark, Delaware, 1990).
K. W. Böer, Advances in Solar Energy: An Annual Review of Research and Development ( Springer Science and Business Media, 2012), Vol. 6.
K. Graff, Metal Impurities in Silicon-Device Fabrication ( Springer Science and Business Media, 2013), Vol. 24.
B. B. Paudyal, K. R. McIntosh, D. H. Macdonald, and G. Coletti, J. Appl. Phys. 107, 054511 (2010).
J. E. Birkholz, K. Bothe, D. Macdonald, and J. Schmidt, J. Appl. Phys. 97, 103708 (2005).
S. Rein and S. Glunz, J. Appl. Phys. 98, 113711 (2005).
J. Schmidt, R. Krain, K. Bothe, G. Pensl, and S. Beljakowa, J. Appl. Phys. 102, 123701 (2007).
Z. Xiong, Z. Zhang, H. Ye, S. Fu, P. Altermatt, Z. Feng, and P. Verlinden, “ High performance multicrystalline wafers with lifetime of 400 μs at industrial scale,” in Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, 2015.
M. Reusch, M. Bivour, M. Hermle, and S. W. Glunz, Energy Proc. 38, 297 (2013).
M. J. Kerr, A. Cuevas, and P. Campbell, Prog. Photovoltaics: Res. Appl. 11, 97 (2003).

Data & Media loading...


Article metrics loading...



An approximate expression proposed by Green predicts the maximum obtainable fill factor () of a solar cell from its open-circuit voltage (). The expression was originally suggested for silicon solar cells that behave according to a single-diode model and, in addition to , it requires an ideality factor as input. It is now commonly applied to silicon cells by assuming a unity ideality factor—even when the cells are not in low injection—as well as to non-silicon cells. Here, we evaluate the accuracy of the expression in several cases. In particular, we calculate the recombination-limited and of hypothetical silicon solar cells from simulated lifetime curves, and compare the exact to that obtained with the approximate expression using assumed ideality factors. Considering cells with a variety of recombination mechanisms, wafer doping densities, and photogenerated current densities reveals the range of conditions under which the approximate expression can safely be used. We find that the expression is unable to predict generally: For a typical silicon solar cell under one-sun illumination, the error is approximately 6% absolute with an assumed ideality factor of 1. Use of the expression should thus be restricted to cells under very low or very high injection.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd