Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Nakamura, Science 281, 956 (1998).
M. Siekacz, M. Sawicka, H. Turski, G. Cywinski, A. Khachapuridze, P. Perlin, T. Suski, M. Bockowski, J. Smalc-Koziorowska, M. Krysko, R. Kudrawiec, M. Syperek, J. Misiewicz, Z. Wasilewski, S. Porowski, and C. Skierbiszewski, J. Appl. Phys. 110, 63110 (2011).
H. K. Cho, D. C. Kim, B. H. Kong, K. H. Lee, J. T. Oh, S. Kim, D. J. Kim, J. W. Kim, and S. K. Hong, J. Cryst. Growth 281, 349 (2005).
A. Yoshikawa, S. B. Che, N. Hashimoto, H. Saito, Y. Ishitani, and X. Q. Wang, J. Vac. Sci. Technol. B 26, 1551 (2008).
I. Gorczyca, T. Suski, N. E. Christensen, and A. Svane, Cryst. Growth Des. 12, 3521 (2012).
A. Yoshikawa, K. Kusakabe, N. Hashimoto, E.-S. Hwang, and T. Itoi, Appl. Phys. Lett. 108, 022108 (2016).
E. Dimakis, A. Y. Nikiforov, C. Thomidis, L. Zhou, D. J. Smith, J. Abell, C.-K. Kao, and T. D. Moustakas, Phys. Status Solidi 205, 1070 (2008).
W. Lin, D. Benjamin, L. Shuping, S. Takashi, I. Shun, and K. Junyong, Cryst. Growth Des. 9, 1698 (2009).
W. Lin, S. Li, and J. Kang, Appl. Phys. Lett. 96, 101115 (2010).
Y. F. Ng, Y. G. Cao, M. H. Xie, X. L. Wang, and S. Y. Tong, Appl. Phys. Lett. 81, 3960 (2002).
Y. Liu, Y. Cai, L. Zhang, M. H. Xie, N. Wang, S. B. Zhang, and H. S. Wu, Appl. Phys. Lett. 92, 231907 (2008).
L. Zhang, W. E. McMahon, Y. Liu, Y. Cai, M. H. Xie, N. Wang, and S. B. Zhang, Surf. Sci. 606, 1728 (2012).
A. I. Duff, L. Lymperakis, and J. Neugebauer, Phys. Rev. B 89, 85307 (2014).
M. S. Miao, Q. M. Yan, and C. G. Van de Walle, Appl. Phys. Lett. 102, 102103 (2013).
T. Suski, T. Schulz, M. Albrecht, X. Q. Wang, I. Gorczyca, K. Skrobas, N. E. Christensen, and A. Svane, Appl. Phys. Lett. 104, 182103 (2014).
T. Schulz, A. Duff, T. Remmele, M. Korytov, T. Markurt, M. Albrecht, L. Lymperakis, J. Neugebauer, C. Chèze, and C. Skierbiszewski, J. Appl. Phys. 115, 33113 (2014).
E. Luna, Á. Guzmán, A. Trampert, and G. Álvarez, Phys. Rev. Lett. 109, 126101 (2012).
G. Koblmüller, “ Studies of nucleation and surfaces kinetics in molecular beam epitaxy of GaN,” Ph.D. thesis (T. U. Wien, 2005).
M. Siekacz, M. L. Szankowska, A. Feduniewicz-Zmuda, J. Smalc-Koziorowska, G. Cywinski, S. Grzanka, Z. R. Wasilewski, I. Grzegory, B. Lucznik, S. Porowski, and C. Skierbiszewski, Phys. Status Solidi 6, S917 (2009).
M. Mesrine, N. Grandjean, and J. Massies, Appl. Phys. Lett. 72, 350 (1998).
C. S. Gallinat, G. Koblmuller, J. S. Brown, and J. S. Speck, J. Appl. Phys. 102, 64907 (2007).
P. Waltereit, O. Brandt, K. Ploog, M. Tagliente, and L. Tapfer, Phys. Rev. B 66, 165322 (2002).
F. C.-P. Massabuau, M. J. Davies, W. E. Blenkhorn, S. Hammersley, M. J. Kappers, C. J. Humphreys, P. Dawson, and R. A. Oliver, Phys. Status Solidi 252, 928 (2015).
E. Monroy, B. Daudin, E. Bellet-Amalric, N. Gogneau, D. Jalabert, F. Enjalbert, J. Brault, J. Barjon, and L. S. Dang, J. Appl. Phys. 93, 1550 (2003).
M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, and W. Alan Doolittle, J. Appl. Phys. 112, 14909 (2012).
R. Averbeck and H. Riechert, Phys. Status Solidi 176, 301 (1999).<301::AID-PSSA301>3.0.CO;2-H
C. Adelmann, R. Langer, G. Feuillet, and B. Daudin, Appl. Phys. Lett. 75, 3518 (1999).
S. P. Lepkowski and I. Gorczyca, Phys. Rev. B 83, 203201 (2011).
M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, and C. J. Humphreys, J. Appl. Phys. 94, 1565 (2003).
E. Dimakis, E. Iliopoulos, K. Tsagaraki, A. Adikimenakis, and A. Georgakilas, Appl. Phys. Lett. 88, 191918 (2006).
H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).
H. H. Lee, H. W. Jang, D. H. Kim, D. Y. Noh, M. S. Yi, M. Tang, and K. S. Liang, Phys. B: Condens. Matter 336, 109 (2003).
Z. Pan, Y. T. Wang, Y. Zhuang, Y. W. Lin, Z. Q. Zhou, L. H. Li, R. H. Wu, and Q. M. Wang, Appl. Phys. Lett. 75, 223 (1999).
L. Parratt, Phys. Rev. 95, 359 (1954).
H. Chen, R. M. Feenstra, J. E. Northrup, T. Zywietz, J. Neugebauer, and D. W. Greve, J. Vac. Sci. Technol. B 18, 2284 (2000).
H. Chen, R. Feenstra, J. Northrup, T. Zywietz, and J. Neugebauer, Phys. Rev. Lett. 85, 1902 (2000).
J. Northrup and J. Neugebauer, Phys. Rev. B 60, R8473 (1999).
S. Lee, C. Freysoldt, and J. Neugebauer, Phys. Rev. B 90, 245301 (2014).
K. Kusakabe, N. Hashimoto, T. Itoi, K. Wang, D. Imai, and A. Yoshikawa, Appl. Phys. Lett. 108, 152107 (2016).

Data & Media loading...


Article metrics loading...



We investigate designed InN/GaN superlattices (SLs) grown by plasma-assisted molecular beam epitaxy on c-plane GaN templates by line-of-sight quadrupole mass spectroscopy and laser reflectivity, and by scanning transmission electron microscopy, X-ray diffraction, and photoluminescence (PL). The structural methods reveal concordantly the different interface abruptness of SLs resulting from growth processes with different parameters. Particularly crucial for the formation of abrupt interfaces is the Ga to N ratio that has to be bigger than 1 during the growth of the GaN barriers, as Ga-excess GaN growth aims at preventing the unintentional incorporation of In accumulated on the growth surface after the supply of InN, that extends the (In,Ga)N quantum well (QW) thickness. Essentially, even with GaN barriers grown under Ga-excess yielding to 1 monolayer (ML) thick QWs, there is a real discrepancy between the designed binary InN and the actual ternary (In,Ga)N ML thick QWs revealed by the above methods. The PL emission line of the sample with atomically abrupt interfaces peaks at 366 nm, which is consistent with the In content measured to be less than 10%.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd