Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. M. Prokes, M. B. Katz, and M. E. Twigg, Appl. Phys. Lett. Mater. 2, 032105 (2014).
C. R. Becker, S. M. Prokes, and C. T. Love, Appl. Mater. Interfaces 8, 530 (2016).
S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. G. Ancona, Appl. Phys. Lett. 90, 093105 (2007).
D. Bouchet and C. Colliex, Ultramicroscopy 96, 139 (2003).
J. M. McHale, A. Auroux, A. J. Perrotta, and A. Novrotsky, Science 277, 788 (1997).
A. H. Tavakoli, P. S. Maram, S. J. Widgeon, J. Rufner, K. van Benthem, S. Ushakov, S. Sen, and A. Navrotsky, J. Phys. Chem. 117, 17123 (2013).
A. Novrotsky, Geochem. Trans. 4, 34 (2003).
Z. Lodziana, N. Topcoe, and J. K. Norskov, Nat. Mater. 3, 289 (2004).
A. P. Borosy, B. Silvi, M. Allavena, and P. Nortier, J. Phys. Chem. 98, 13189 (1994).
S. H. Tolbert and A. P. Alivisatos, Annu. Rev. Phys. Chem. 46, 595 (1995).
S.-C. Liao, Y.-J. Chen, B. H. Kear, and W. E. Mayo, Nanostruct. Mater. 10, 1063 (1998).
W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).
T. Watanabe, H. Yoshida, Y. Ikuhara, T. Sakuma, H. Muto, and M. Sakai, Mater. Trans. 43, 1561 (2002).
J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
M. Yu. Gutkin and A. M. Smirnov, Acta Mater. 88, 91 (2015).
S. A. Dayeh, W. Tang, F. Boioli, K. L. Kavanagh, H. Zheng, J. Wang, N. H. Mack, G. Swadener, J. Y. Huang, L. Miglio, K.-N. Tu, and S. T. Picraux, Nanoletters 13, 1869 (2013).
H. J. Chu, J. Wang, C. Z. Zhou, and I. J. Beyerlein, Acta Mater. 59, 7114 (2011).
F. Kroupa, Chech. J. Phys. B 10, 284 (1960).
J. P. Hirth and J. Lothe, Theory of Dislocations ( Krieger, Huntington, NY, 1982).
W. Cai and R. Weinberger, Math. Mech. Solids 14, 192 (2009).
D. J. Eaglesham, H.-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).
O. P. Karpenko, S. M. Yalisove, and D. J. Eaglesham, J. Appl. Phys. 82, 1157 (1997).
J. W. Elam, Z. A. Sechrist, and S. M. George, Thin Solid Films 414, 43 (2002).
J. M. Anderson, Z. Czigany, P. Jin, and U. Helmersson, J. Vac. Sci. Technol. A 22, 117 (2004).

Data & Media loading...


Article metrics loading...



Although the crystalline α and γ phases are the most stable forms of alumina, small-diameter (<6 nm) nanoparticles are known to be completely amorphous, due to the surface energy being correspondingly lower for the less stable non-crystalline phase. AlO films with a thickness of 5 nm grown by low temperature (200 °C) atomic layer deposition (ALD) on small-diameter (<20 nm) GaO nanowires (NWs), however, are identified by transmission electron microscopy as belonging to the α, γ, and possibly θ crystalline phases of AlO, while films deposited on larger diameter (>20 nm) NWs are found to be amorphous. Indeed, until recently, all AlO, films deposited by low-temperature ALD using trimethylaluminum and water have been reported to be amorphous, regardless of film thickness or substrate. The formation of a crystalline ALD film can be understood in terms of the energetics of misfit dislocations that maintain the registry between the ALD film and the NW substrate, as well as the influence of strain and surface energy. The decreasing energy of co-axial misfit dislocations with NW diameter results in a corresponding decrease in the contribution of the AlO/GaO interface to the free energy, while the interfacial energy for an amorphous film is independent of the NW diameter. Therefore, for NW cores of sufficiently small diameter, the free energy contribution of the AlO/GaO interface is smaller for crystalline films than for amorphous films, thereby favoring the formation of crystalline films for small-diameter NWs. For ALD AlO films of 10 nm thickness deposited on small-diameter GaO NWs, however, only the first 5 nm of the ALD film is found to be crystalline, possibly due to well-established kinetic limitations to low temperature epitaxial growth.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd