Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100, 123104 (2012).
R. Addou, S. McDonnell, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C. L. Hinkle, M. Quevedo-Lopez, H. N. Alshareef, L. Colombo, J. W. P. Hsu, and R. M. Wallace, ACS Nano 9, 9124 (2015).
J. H. Kim, J. Lee, J. H. Kim, C. C. Hwang, C. Lee, and J. Y. Park, Appl. Phys. Lett. 106, 251606 (2015).
R. Duffy, P. Foley, B. Filippone, G. Mirabelli, D. O'Connell, B. Sheehan, P. Carolan, M. Schmidt, K. Cherkaoui, R. Gatensby, T. Hallam, G. Duesberg, F. Crupi, R. Nagle, and P. K. Hurley, ECS J. Solid State Sci. Technol. 5, Q3016 (2016).
W. Park, J. Park, J. Jang, H. Lee, H. Jeong, K. Cho, S. Hong, and T. Lee, Nanotechnology 24, 095202 (2013).
Q. Yue, Z. Z. Shao, S. L. Chang, and J. B. Li, Nanoscale Res. Lett. 8, 425 (2013).
S. Y. Lee, U. J. Kim, J. Chung, H. Nam, H. Y. Jeong, G. H. Han, H. Kim, H. M. Oh, H. Lee, H. Kim, Y. Roh, J. Kim, S. W. Hwang, Y. Park, and Y. H. Lee, ACS Nano 10, 6100 (2016).
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
J. Kim and K. Yong, J. Vac. Sci. Technol. B 24, 1147 (2006).
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy ( Perkin-Elmer Corporation, Minnesota, 1992).
Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, and Z. Dai, J. Mater. Chem. A 2, 17735 (2014).
J. Zhu, Y. R. Li, and Z. G. Liu, J. Phys. D: Appl. Phys. 37, 28962900 (2004).
M. Kang, S. Rathi, I. Lee, D. Lim, J. Wang, L. Li, M. A. Khan, and G.-H. Kim, Appl. Phys. Lett. 106, 143108 (2015).
R. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace, and C. L. Hinkle, ACS Nano 9, 474 (2015).
J. Gao, B. Li, J. Tan, P. Chow, T.-M. Lu, and N. Koratkar, ACS Nano 10, 2628 (2016).
Z. He, X. Wang, W. Xu, Y. Zhou, Y. Sheng, Y. Rong, J. M. Smith, and J. H. Warner, ACS Nano 10, 5847 (2016).
J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, Nano Lett. 14, 6964 (2014).
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, and G. A. Steele, 2D Mater. 1, 025001 (2014).
S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. 104, 103106 (2014).
J.-S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, and D. Akinwande, Sci. Rep. 5, 8989 (2015).
H. Liu, N. Han, and J. Zhao, RSC Adv. 5, 17572 (2015).
H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, Nat. Commun. 4, 2642 (2013).
J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, and Z. Zhang, Nat. Commun. 6, 6293 (2015).
K. C. Santosh, R. C. Longo, R. M. Wallace, and K. J. Cho, Appl. Phys. 117, 135301 (2015).
R. Addou, L. Colombo, and R. M. Wallace, ACS Appl. Mater. Interfaces 7, 11921 (2015).
Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).
G. Lee, X. Cui, D. Kim, G. Arefe, X. Zhang, C. Lee, F. Ye, W. Kenji, T. Taniguchi, P. Kim, and J. Hone, ACS Nano 9, 7019 (2015).
B. Long, M. Manning, M. Burke, B. N. Szafranek, G. Visimberga, D. Thompson, J. C. Greer, I. M. Povey, J. MacHale, G. Lejosne, D. Neumaier, and A. J. Quinn, Adv. Funct. Mater. 22, 717 (2012).
J. O'Connell, G. Collins, G. P. McGlacken, R. Duffy, and J. D. Holmes, ACS Mater. Interfaces 8, 4101 (2016).

Data & Media loading...


Article metrics loading...



A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS, MoSe, MoTe, HfS, and HfSe. The most reactive were MoTe and HfSe. HfSe, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180–240 nm tall and 420–540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study of atmosphere exposed HfSe was conducted over various time scales, which indicated that the Hf undergoes a preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-Ray Spectroscopy showed that the blisters are Se-rich; thus, it is theorised that HfO forms when the HfSe reacts in ambient, which in turn causes the Se atoms to be aggregated at the surface in the form of blisters. Overall, it is evident that air contact drastically affects the structural properties of TMD materials. This issue poses one of the biggest challenges for future TMD-based devices and technologies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd