Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. Zhang, H. Liu, J. Qu, and J. Li, Energy Environ. Sci. 9, 1190 (2016).
P.-Z. Shao, H.-M. Zhao, H.-W. Cao, X.-F. Wang, Y. Pang, Y.-X. Li, N.-Q. Deng, J. Zhang, G.-Y. Zhang, Y. Yang, S. Zhang, and T.-L. Ren, Appl. Phys. Lett. 108, 203105 (2016).
P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, Science 351, 688 (2016).
P. K. Mohapatra, S. Deb, B. P. Singh, P. Vasa, and S. Dhar, Appl. Phys. Lett. 108, 042101 (2016).
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
T. Mueller, F. Xia, and P. Avouris, Nat. Photonics 4, 297 (2010).
S. Huang, L. Liang, X. Ling, A. A. Puretzky, D. B. Geohegan, B. G. Sumpter, J. Kong, V. Meunier, and M. S. Dresselhaus, Nano Lett. 16, 1435 (2016).
P. C. Yeh, W. Jin, N. Zaki, J. Kunstmann, D. Chenet, G. Arefe, J. T. Sadowski, J. I. Dadap, P. Sutter, J. Hone, and R. M. Osgood, Jr., Nano Lett. 16, 953 (2016).
W. Liu, S. Kraemer, D. Sarkar, H. Li, P. M. Ajayan, and K. Banerjee, Chem. Mater. 26, 907 (2014).
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
S. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W. Yao, D. Cobden, and X. Xu, Nat. Phys. 9, 149 (2013).
S. Choi, Z. Shaolin, and W. Yang, J. Korean Phys. Soc. 64, 1550 (2014).
G. Hao, Z. Huang, Y. Liu, X. Qi, L. Ren, X. Peng, L. Yang, X. Wei, and J. Zhong, AIP Adv. 3, 042125 (2013).
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, and J. H. Warner, Chem. Mater. 26, 6371 (2014).
A. Govind Rajan, J. H. Warner, D. Blankschtein, and M. S. Strano, ACS Nano 10, 4330 (2016).
M. Xia, K. B. Yin, G. Capellini, G. Niu, Y. J. Gong, W. Zhou, P. M. Ajayan, and Y. H. Xie, ACS Nano 9, 12246 (2015).
S. Yang, J. Kang, Q. Yue, and K. Yao, J. Phys. Chem. C 118, 9203 (2014).
Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P. H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu, Nano Lett. 13, 3870 (2013).
J. D. Cain, F. Shi, J. Wu, and V. P. Dravid, ACS Nano 10, 5440 (2016).
J. He, K. Hummer, and C. Franchini, Phys. Rev. B 89, 075409 (2014).
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nat. Mater. 12, 754 (2013).
S. Wang, X. Wang, and J. H. Warner, ACS Nano 9, 5246 (2015).
H. I. Karunadasa, E. Montalvo, Y. J. Sun, M. Majda, J. R. Long, and C. J. Chang, Science 335, 698 (2012).
T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007).
J. H. Kim, J. Lee, J. H. Kim, C. C. Hwang, C. Lee, and J. Y. Park, Appl. Phys. Lett. 106, 251606 (2015).
O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B. K. Bussmann, J. Maultzsch, and M. Schleberger, Beilstein J. Nanotechnol. 5, 291 (2014).
J. Shakya, A. S. Patel, F. Singh, and T. Mohanty, Appl. Phys. Lett. 108, 013103 (2016).
K. Dolui, I. Rungger, and S. Sanvito, Phys. Rev. B 87, 165402 (2013).
Y. Li, C.-Y. Xu, and L. Zhen, Appl. Phys. Lett. 102, 143110 (2013).
S. Das and J. Appenzeller, Phys. Status Solidi RRL 7, 268 (2013).
L. H. Li and Y. Chen, J. Appl. Phys. 116, 213904 (2014).
S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. C. Johnson, Nano Lett. 9, 7 (2009).

Data & Media loading...


Article metrics loading...



Compared with the most studied monolayer MoS, bilayer MoS possesses many distinct fascinating physical properties and potential applications owing to interlayer interactions and structural symmetry. Here, bilayer MoS domains with strict identical AB Bernal stacked order were controllably synthesized using chemical vapor deposition method. In addition, the electrostatic properties of bilayer MoS were systematically investigated by multiple means of photoemission electron microscopy, electrostatic force microscopy, and kelvin probe force microscopy. We found that the work function of monolayer MoS is homogeneous across single crystals and polycrystalline films except for grain boundaries. However, the work function of the Bernal stacked bilayer MoS decreases by 50 ± 4 meV compared with that of monolayer MoS due to the interlayer coupling and screening effects. The deeper understanding gained here on the electrostatic properties of the AB Bernal stacked bilayer MoS should help in the creation of next-generation electronic and optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd