Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
IAEA Safety Report Series, 2014.
N. Bowden, A. Bernstein, M. Allen, J. Brennan, M. Cunningham, J. Estrada, C. Greaves, C. Hagmann, J. Lund, W. Mengesha et al., Nucl. Instrum. Methods Phys. Res., Sect. A 572, 985 (2007).
T. Classen, A. Bernstein, N. Bowden, B. Cabrera-Palmer, A. Ho, G. Jonkmans, L. Kogler, D. Reyna, and B. Sur, Nucl. Instrum. Methods Phys. Res., Sect. A 771, 139 (2015).
V. Bulaevskaya and A. Bernstein, J. Appl. Phys. 109, 114909 (2011).
C. Bemporad, G. Gratta, and P. Vogel, Rev. Mod. Phys. 74, 297 (2002).
T. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, T. Lasserre, J. Martino, G. Mention et al., Phys. Rev. C 83, 054615 (2011).
A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte et al., Prog. Nucl. Energy 46, 77 (2005).
R. Wigeland, T. Taiwo, H. Ludewig, M. Todosow, W. Halsey, J. Gehin, R. Jubin, J. Buelt, S. Stockinger, K. Jenni, B. Oakley et al., US DOE Fuel Cycle Technol. 8 (2014).
I. Gauld, O. Hermann, and R. Westfall, Report No. ORNL/TM-2005/39, Version 6, 2009.
P. Huber, Phys. Rev. C 84, 024617 (2011).
N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. Wagner, Phys. Rev. Lett. 112, 122501 (2014).
T. England and B. Rider, Report No. ENDF-349, LA-UR-94-3106, Los Alamos National Laboratory, 1994.
M. Bhat, in Nuclear Data for Science and Technology ( Springer, 1992), pp. 817821.
P. Vogel, G. Schenter, F. Mann, and R. Schenter, Phys. Rev. C 24, 1543 (1981).
D. Wilkinson, Nucl. Instrum. Methods Phys. Res., Sect. A 290, 509 (1990).
A. Sirlin, Phys. Rev. D 84, 014021 (2011).
A. Hayes, J. Friar, G. Garvey, G. Jungman, and G. Jonkmans, Phys. Rev. Lett. 112, 202501 (2014).
I. S. Glossary, International Nuclear Verification Series No. 3 ( IAEA, Austria, 2001).
D. Dwyer and T. Langford, Phys. Rev. Lett. 114, 012502 (2015).
E. Christensen, P. Huber, P. Jaffke, and T. Shea, Phys. Rev. Lett. 113, 042503 (2014).
N. Bowden, A. Bernstein, S. Dazeley, R. Svoboda, A. Misner, and T. Palmer, J. Appl. Phys. 105, 064902 (2009).

Data & Media loading...


Article metrics loading...



Various groups have demonstrated that antineutrino monitoring can be successful in assessing the plutonium content in water-cooled nuclear reactors for nonproliferation applications. New reactor designs and concepts incorporate nontraditional fuel types and chemistry. Understanding how these properties affect the antineutrino emission from a reactor can extend the applicability of antineutrino monitoring. Thorium molten salt reactors breed 233U, that if diverted constitute a direct use material as defined by the International Atomic Energy Agency (IAEA). The antineutrino spectrum from the fission of 233U has been estimated for the first time, and the feasibility of detecting the diversion of 8 kg of 233U, within a 30 day timeliness goal has been evaluated. The antineutrino emission from a thorium reactor operating under normal conditions is compared to a diversion scenario by evaluating the daily antineutrino count rate and the energy spectrum of the detected antineutrinos at a 25 m standoff. It was found that the diversion of a significant quantity of 233U could not be detected within the current IAEA timeliness detection goal using either tests. A rate-time based analysis exceeded the timeliness goal by 23 days, while a spectral based analysis exceeds this goal by 31 days.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd