Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Kramers, “ Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7, 284304 (1940).
M. H. Devoret, D. Esteve, J. M. Martinis, A. Cleland, and J. Clarke, “ Resonant activation of a Brownian particle out of a potential well: Microwave-enhanced escape from the zero-voltage state of a Josephson junction,” Phys. Rev. B 36, 5873 (1987).
M. H. Devoret, J. M. Martinis, D. Esteve, and J. Clarke, “ Resonant activation from the zero-voltage state of a current-biased Josephson junction,” Phys. Rev. Lett. 53, 12601263 (1984).
T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F. Lombardi, “ Quantum dynamics of a d-wave Josephson junction,” Science 311, 5760 (2006).
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “ Superconductivity at 39 K in magnesium diboride,” Nature 410, 6364 (2001).
X. X. Xi, “ Two-band superconductor magnesium diboride,” Rep. Prog. Phys. 71, 116501116526 (2008).
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “ Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.050.12) with Tc = 26 K,” J. Am. Chem. Soc. 130, 32963297 (2008).
H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, “ Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs,” Nature 453, 376378 (2008).
J. Paglione and R. L. Greene, “ High-temperature superconductivity in iron-based materials,” Nat. Phys. 6, 645658 (2010).
Y. Ota, M. Machida, and T. Koyama, “ Macroscopic quantum tunneling in multigap superconducting Josephson junctions: Enhancement of escape rate via quantum fluctuations of the Josephson-Leggett mode,” Phys. Rev. B 83, 060503 (2011).
H. Asai, Y. Ota, S. Kawabata, M. Machida, and F. Nori, “ Theory of macroscopic quantum tunneling with Josephson-Leggett collective excitations in multiband superconducting Josephson junctions,” Phys. Rev. B 89, 224507 (2014).
H. Asai, S. Kawabata, Y. Ota, and M. Machida, “ Two-dimensional macroscopic quantum tunneling in multi-gap superconductor Josephson junctions,” J. Phys.: Conf. Ser. 568, 022006 (2014).
H. Asai, Y. Ota, S. Kawabata, and F. Nori, “ Inter-band phase fluctuations in macroscopic quantum tunneling of multi-gap superconducting Josephson junctions,” in Proceedings of the 26th International Symposium on Superconductivity [Physica C 504, 8183 (2014)].
A. J. Leggett, “ Number-phase fluctuations in two-band superconductors,” Prog. Theor. Phys. 36, 901930 (1966).
M. Tinkham, Introduction to Superconductivity, 2nd ed. ( Dover Publications, 1996).
A. Barone and G. Paternò, Physics and Applications of the Josephson Effect ( Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
J. M. Martinis, M. H. Devoret, and J. Clarke, “ Energy-level quantization in the zero-voltage state of a current-biased Josephson junction,” Phys. Rev. Lett. 55, 15431546 (1985).
K. Chen, Y. Cui, Q. Li, C. G. Zhuang, Z.-K. Liu, and X. X. Xi, “ Study of MgB2/I/Pb tunnel junctions on MgO (211) substrates,” Appl. Phys. Lett. 93, 012502 (2008).
Y. Cui, K. Chen, Q. Li, X. X. Xi, and J. M. Rowell, “ Degradation-free interfaces in MgB2/insulator/Pb Josephson tunnel junctions,” Appl. Phys. Lett. 89, 2025133 (2006).
Although these junctions are relatively large, junctions of similar size fabricated in the same way exhibited good uniformity of the barrier.19
K. Chen, W. Dai, C. Zhuang, Q. Li, S. Carabello, J. G. Lambert, J. T. Mlack, R. C. Ramos, and X. X. Xi, “ Momentum-dependent multiple gaps in magnesium diboride probed by electron tunnelling spectroscopy,” Nat. Commun. 3, 619 (2012).
S. Carabello, J. G. Lambert, J. Mlack, W. Dai, Q. Li, K. Chen, D. Cunnane, C. G. Zhuang, X. X. Xi, and R. C. Ramos, “ Energy gap substructures in conductance measurements of MgB2-based Josephson junctions: beyond the two-gap model,” Supercond. Sci. Technol. 28, 055015 (2015).
H. F. Yu, X. B. Zhu, Z. H. Peng, W. H. Cao, D. J. Cui, Y. Tian, G. H. Chen, D. N. Zheng, X. N. Jing, L. Lu, S. P. Zhao, and S. Han, “ Quantum and classical resonant escapes of a strongly driven Josephson junction,” Phys. Rev. B 81, 144518 (2010).
A. Wallraff, T. Duty, A. Lukashenko, and A. V. Ustinov, “ Multiphoton transitions between energy levels in a current-biased Josephson tunnel junction,” Phys. Rev. Lett. 90, 037003 (2003).
S. Guozhu, W. Yiwen, C. Junyu, C. Jian, J. Zhengming, K. Lin, X. Weiwei, Y. Yang, H. Siyuan, and W. Peiheng, “ Microwave-induced phase escape in a Josephson tunnel junction,” Phys. Rev. B 77, 104531 (2008).
T. A. Fulton and L. N. Dunkleberger, “ Lifetime of the zero-voltage state in Josephson tunnel junctions,” Phys. Rev. B 9, 47604768 (1974).
J. M. Martinis, M. H. Devoret, and J. Clarke, “ Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction,” Phys. Rev. B 35, 46824698 (1987).
G. Rotoli, T. Bauch, T. Lindstrom, D. Stornaiuolo, F. Tafuri, and F. Lombardi, “ Classical resonant activation of a Josephson junction embedded in an LC circuit,” Phys. Rev. B 75, 144501 (2007).
M. Büttiker, E. P. Harris, and R. Landauer, “ Thermal activation in extremely underdamped Josephson-junction circuits,” Phys. Rev. B 28, 12681275 (1983).
here combines the effect of the quasiparticle tunneling (the “sub-gap” resistance, from the slope of the curve for ) together with the circuit in which the junction is embedded.4,27

Data & Media loading...


Article metrics loading...



Microwave resonant activation is a powerful, straightforward technique to study classical and quantum systems, experimentally realized in Josephson junction devices cooled to very low temperatures. These devices typically consist of two single-gap superconductors separated by a weak link. We report the results of the first resonant activation experiments on hybrid thin film Josephson junctions consisting of a multi-gap superconductor (MgB) and a single-gap superconductor (Pb or Sn). We can interpret the plasma frequency in terms of theories both for conventional and hybrid junctions. Using these models, we determine the junction parameters including critical current, resistance, and capacitance and find moderately high quality factors of 100 for these junctions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd