Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. H. Goldan, J. A. Rowlands, M. Lu, and W. Zhao, “ Nanopattern multi-well avalanche selenium detector with picosecond time resolution,” in 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference, Seattle (2014), pp. N32N34.
H. Shimamoto, T. Yamashita, M. Kubota, and H. Maruyama, “ Advanced camera technologies for broadcasting,” IEEE Micro 31, 5157 (2011).
P. Jóvári, R. Delaplane, and L. Pusztai, “ Structural models of amorphous selenium,” Phys. Rev. B 67(17), 172201 (2003).
H. Liu, L. Wang, X. Xiao, F. De Carlo, J. Feng, H.-K. Mao, and R. J. Hemley, “ Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography,” Proc. Natl. Acad. Sci. U.S.A. 105, 1322913234 (2008).
A. Mooradian and G. B. Wright, “ The Raman spectrum of trigonal, monoclinic and amorphous selenium,” in Proceedings of the International Symposium, Physics of Selenium and Tellurium, edited by W. C. Cooper (Pergamon Press, 1969), pp. 269276.
R. Kaplow, T. A. Rowe, and B. L. Averbach, “ Atomic arrangement in vitreous selenium,” Phys. Rev. 168(3), 10681079 (1968).
G. J. Fan, F. Q. Guo, Z. Q. Hu, M. X. Quan, and K. Lu, “ Amorphization of selenium induced by high-energy ball milling,” Phys. Rev. B 55(17), 1101011013 (1997).
F. Guo and K. Lu, “ Microstructural evolution in melt-quenched amorphous Se during mechanical attrition,” Phys. Rev. B 57(17), 1041410420 (1998).
T. Scopigno, W. Steurer, S. N. Yannopoulos, A. Chrissanthopoulos, M. Krisch, G. Ruocco, and T. Wagner, “ Vibrational dynamics and surface structure of amorphous selenium,” Nat. Commun. 2, 195 (2011).
J. A. Reyes-Retana and A. A. Valladares, “ Structural properties of amorphous selenium: An ab initio molecular-dynamics simulation,” Comput. Mater. Sci. 47(4), 934939 (2010).
J. Hegedüs and S. Kugler, “ Growth of amorphous selenium thin films: Classical versus quantum mechanical molecular dynamics simulation,” J. Phys.: Condens. Matter 17(41), 64596468 (2005).
J. Hegedüs, K. Kohary, and D. G. Pettifor, “ Photoinduced volume changes in amorphous selenium,” Phys. Rev. Lett. 95, 206803 (2005).
K. Nakamura and A. Ikawa, “ Medium-range order in amorphous selenium: Molecular dynamics simulations,” Phys. Rev. B 67(10), 104203 (2003).
T. Koslowski, M. Koblischke, and A. Blumen, “ Modified small-world networks as models of liquid and amorphous selenium,” Phys. Rev. B 66(6), 064205 (2002).
P. Jóvári and L. Pusztai, “ Structure of disordered forms of selenium close to the melting point,” Phys. Rev. B 64(1), 014205 (2001).
H. Rau, “ Vapour composition and critical constants of selenium,” J. Chem. Thermodyn. 6, 525535 (1974).
W. C. Cooper and R. A. Westbury, “ The structure of Selenium,” in Selenium, edited by R. A. Zingaro and W. C. Cooper ( Van Nostrand Reinhold Company, New York, 1974), Chap. 3, pp. 87147.
I. Srb and A. Vaško, “ The vibrational spectra of sulphur and selenium in the amorphous state and their similarity,” Czech. J. Phys. 13, 827840 (1963).
A. Vasko, “ Optical properties of amorphous and liquid selenium,” in Proceedings of the International Symposium, Physics of Selenium and Tellurium, edited by W. C. Cooper (Pergamon Press, 1969), pp. 241254.
A. Eisenberg and A. V. Tobolsky, “ Equilibrium polymerization of selenium,” J. Polymer Sci. 46(147), 1928 (1960).
G. Weiser and J. Stuke, “ Electroreflection of amorphous selenium,” Phys. Status Solidi B 35, 747753 (1969).
G. G. Roberts, B. S. Keating, and A. V. Shelley, “ Electroabsorption in disordered solids: selenium,” J. Phys. C: Solid State Phys. 7, 15951608 (1974).
A. T. Ward, “ Investigation of amorphous chalcogenide alloys using laser raman spectroscopy,” Adv. Chem. 110, 163178 (1972).
R. Steudel and E. M. Strauss, “ Detection of Se-6, Se-7, and Se-8 in selenium solutions by high-pressure liquid chromatography,” Z. Naturforsch. 36b, 10851088 (1981).
G. Lucovsky, “ Comments on the structure of chalcogenide glasses from infrared spectroscopy,” Mater. Res. Bull. 4(8), 505514 (1969).
M. H. Brodsky, R. J. Gambino, J. E. Smith, and Y. Yacoby, “ The Raman spectrum of amorphous tellurium,” Phys. Status Solidi B 52(2), 609614 (1972).
G. Lucovsky, “ Selenium, the amorphous and liquid states,” in The Physics of Selenium and Tellurium, edited by E. Gerlach and P. Grosse, Springer Series in Solid-State Sciences Vol. 13 ( Springer, New York, 1979), pp. 178192.
N. F. Mott and E. A. Davis, “ Non-crystalline semiconductors,” in Electronic Processes in Non-Crystalline Semiconductors ( Oxford University Press, 1979), Chap. 6, p. 303.
C. Oligschleger, R. Jones, S. Reimann, and H. Schober, “ Model interatomic potential for simulations in selenium,” Phys. Rev. B 53(10), 61656173 (1996).
T. Scopigno, R. Di Leonardo, G. Ruocco, A. Q. R. Baron, S. Tsutsui, F. Bossard, and S. N. Yannopoulos, “ High frequency dynamics in a monatomic glass,” Phys. Rev. Lett. 92, 025503 (2004).
J. Cornet and D. Rossier, “ Structural ageing in bulk and thin films of vitreous selenium,” in Proceedings of the Fifth International Conference on Amorphous and liquid semiconductors, edited by J. Stuke and W. Brenig ( Taylor & Francis, London, 1974), pp. 267275.
H. Y. Zhang, Z. Q. Hu, and K. Lu, “ Transformation from the amorphous to the nanocrystalline state in pure selenium,” Nanostruct. Mater. 5, 4152 (1995).
R. B. Stephens, “ The viscosity and structural relaxation rate of evaporated amorphous selenium,” J. Appl. Phys. 49, 58555864 (1978).
G. S. Belev, “ Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors,” Ph.D. thesis, University of Saskatchewan, 2007.
X. Zhang and D. Drabold, “ Direct molecular dynamic simulation of light-induced structural change in amorphous selenium,” Phys. Rev. Lett. 83, 50425045 (1999).
F. Shimojo, K. Hoshino, and Y. Zempo, “ Electronic and atomic structures of supercritical fluid selenium: Ab initio molecular dynamics simulations,” J. Non-Cryst. Solids 312–314, 290293 (2002).
J. C. Mauro and A. K. Varshneya, “ Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71, 214105 (2005).
D. Caprion and H. Schober, “ Structure and relaxation in liquid and amorphous selenium,” Phys. Rev. B 62(6), 37093716 (2000).
J. Akola, J. Larrucea, and R. O. Jones, “ Polymorphism in phase-change materials: Melt-quenched and as-deposited amorphous structures in Ge2Sb2Te5 from density functional calculations,” Phys. Rev. B 83, 094113 (2011).
M. Griebel, S. Knapek, and G. W. Zumbusch, Numerical Simulation in Molecular Dynamics ( Springer, 2007).
Virtual nanolab and atomistix toolkit version 2015,” see for QuantumWise A/S, 2015.
G. J. Martyna, M. L. Klein, and M. Tuckerman, “ Nosé-Hoover chains: The canonical ensemble via continuous dynamics,” J. Chem. Phys. 97, 2635 (1992).
S. Melchionna, G. Ciccotti, and B. L. Holian, “ Hoover NPT dynamics for systems varying in shape and size,” Mol. Phys. 78, 533544 (1993).
J. Hegedüs, K. Kohary, and S. Kugler, “ Comparative analysis of different preparation methods of chalcogenide glasses: molecular dynamics structure simulations,” J. Non-Cryst. Solids 338–340, 283286 (2004).
L. Guttman, “ Ring structure of the crystalline and amorphous forms of silicon dioxide,” J. Non-Cryst. Solids 116, 145147 (1990).
S. Le Roux and P. Jund, “ Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems,” Comput. Mater. Sci. 49, 7083 (2010).
R. D. Burbank, “ The crystal structure of α-monoclinic selenium,” Acta Cryst. 4, 140148 (1951).
R. Martin, G. Lucovsky, and K. Helliwell, “ Intermolecular bonding and lattice dynamics of Se and Te,” Phys. Rev. B 13(4), 13831395 (1976).
R. Bellissent, “ Short range order in the disordered states of selenium-tellurium mixtures,” Nucl. Instrum. Methods Phys. Res. 199, 289294 (1982).
R. B. Stephens, “ Relaxation effects in glassy selenium,” J. Non-Cryst. Solids 20(1), 7581 (1976).
R. C. Keezer and M. W. Bailey, “ The structure of liquid selenium from viscosity measurements,” Mater. Res. Bull. 2, 185192 (1967).
M. Misawa and K. Suzuki, “ Ring-chain transition in liquid selenium by a disordered chain model,” J. Phys. Soc. Jpn. 44, 16121618 (1978).
R. Böhmer and C. A. Angell, “ Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures,” Phys. Rev. B 48, 58575864 (1993).
G. Briegleb, “ Die dynamisch-allotropen Zustände des Selens,” Z. Phys. Chem. A 144, 321339 (1929).

Data & Media loading...


Article metrics loading...



The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd