Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
C. A. M. Fabian, M. Moseley, B. Gunning, W. A. Doolittle, A. M. Fischer, Y. O. Wei, and F. A. Ponce, IEEE J. Photonics 4, 601 (2014).
H. Masui, S. Nakamura, S. P. DenBaars, and U. K. Mishra, IEEE Trans. Electron Devices 57, 88 (2010).
R. P. Tompkins, J. R. Smith, K. W. Kirchner, K. A. Jones, J. H. Leach, K. Udwary, E. Preble, P. Suvarna, J. M. Leathersich, and F. Shahedipour-Sandvik, J. Electron. Mater. 43, 850 (2014).
H. Ogawa, H. Kasai, N. Kaneda, T. Tsuchiya, T. Mishima, and T. Nakamura, Phys. Status Solidi C 11, 918 (2014).
M. A. Reshchikov, G.-C. Yi, and B. W. Wessels, Phys. Rev. B 59, 13176 (1999).
E. R. Glaser, W. E. Carlos, G. C. B. Braga, J. A. Freitas, Jr., W. J. Moore, B. V. Shanabrook, R. L. Henry, A. E. Wickenden, and D. D. Koleske, Phys. Rev. B 65, 085312 (2002).
R. Kirste, M. P. Hoffmann, J. Tweedie, Z. Bryan, G. Callsen, T. Kure, C. Nenstiel, M. Wagner, R. Collazo, A. Hoffmann, and Z. Sitar, J. Appl. Phys. 113, 103504 (2013).
B. Monemar, P. P. Paskov, G. Pozina, C. Hemmingsson, J. P. Bergman, S. Khromov, V. N. Izyumskaya, V. Avrutin, X. Li, H. Morkoc, M. Iwaya, and I. Akasaki, J. Appl. Phys. 115, 053507 (2014).
H. Alves, F. Leiter, D. Pfisterer, D. M. Hofmann, B. K. Meyer, S. Einfeld, H. Heinke, and D. Hommel, Phys. Status Solidi C 0, 1770 (2003).
G. N. Aliev, S. Zeng, J. J. Davies, D. Wolverson, S. J. Bingham, P. J. Parbrook, and T. Wang, Phys. Rev. B 71, 195204 (2005).
D. M. Matlock, M. E. Zvanut, H. Wang, J. R. DiMaio, R. F. Davis, J. E. Van Nostrand, R. L. Henry, D. Koleske, and A. Wickenden, J. Electron. Mater. 34, 34 (2005).
L. S. Dang, K. M. Lee, and G. D. Watkins, Phys. Rev. Lett. 45, 390 (1980).
J. L. Patel, J. E. Nicholls, and J. J. Davies, J. Phys. C: Solid State Phys. 14, 1339 (1981).
G. E. Pake and T. L. Estle, The Physical Principles of Electron Paramagnetic Resonance ( Benjamin, Inc., MA, 1973), Chap. 5.
E. R. Glaser, M. Murthy, J. A. Freitas, Jr., D. F. Storm, L. Zhou, and D. J. Smith, Physica B 401–402, 327 (2007).
M. E. Zvanut, J. Dashdorj, J. A. Freitas, E. R. Glaser, W. R. Willoughby, J. H. Leach, and K. Udwary, J. Electron. Mater. 45, 2692 (2016).
A. V. Malyshev, I. A. Merkulov, and A. V. Rodina, Phys. Solid State 40, 917 (1998).
S. D. Burnham, G. Namkoong, D. C. Look, B. Clafin, and W. A. Doolittle, J. Appl. Phys. 104, 024902 (2008).
U. R. Sunay, M. E. Zvanut, and A. A. Allerman, J. Electron. Mater. 44, 4139 (2015).
J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance ( John Wiley & Sons, Inc., NY, 1994).
U. R. Sunay and M. E. Zvanut, University of Alabama at Birmingham, 2016 (unpublished).
A. M. Stoneham, Rev. Mod. Phys. 41, 82 (1969).
G. Feher and A. F. Kip, Phys. Rev. 98, 337 (1955).
R. Stȩpniewski, A. Wysmołek, M. Potemski, K. Pakuła, J. M. Baranowski, I. Grzegory, S. Porowski, G. Martinez, and P. Wyder, Phys. Rev. Lett. 91, 226404 (2003).
C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. L. Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B 54, 17745 (1996).
C. Flynn and W. Lee, Mater. Res. Express 1, 025901 (2014).
C. G. Van de Walle, Phys. Rev. B 68, 165209 (2003).
T. Paskova and K. R. Evans, IEEE J. Sel. Top. Quantum Electron. 15, 1041 (2009).
V. Ivantsov and A. Volkova, ISRN Condens. Matter Phys. 2012, 184023.
B. Gunning, J. Lowder, M. Moseley, and W. A. Doolittle, Appl. Phys. Lett. 101, 082106 (2012).

Data & Media loading...


Article metrics loading...



The electron paramagnetic resonance (EPR) spectrum of the Mg acceptor is studied in a variety of GaN samples, including mm-thick free-standing substrates and sub-micron heteroepitaxial films. The former allows a view of the acceptor unique for EPR—in an environment with less than 107 cm−3 dislocations and doping densities ranging from 4 × 1016 to 6 × 1018 cm−3. By probing Mg in a broad range of samples in one study a new feature of the acceptor emerges. The EPR data reveal an anisotropic line shape that reflects a change in the crystal field in the vicinity of the Mg acceptor. This feature must be accommodated by any of the models proposed for the Mg acceptor. Here, we show that one such previously proposed model agrees well with the EPR data obtained from the wide variety of samples studied. The work implies that Mg-doped GaN contains a common Mg-related defect which can be affected by local crystal fields established during growth.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd