Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Linda Wilson, International Technology Roadmap for Semiconductors ( Semiconductor Industry Association, 2013).
J. A. del Alamo, “ Nanometre-scale electronics with III–V compound semiconductors,” Nature 479, 317323 (2011).
H. Iwai, “ Roadmap for 22 nm and beyond (Invited Paper),” Microelectron. Eng. 86, 15201528 (2009).
S. Gaudet, K. De Keyser, S. Lambert-Milot, J. Jordan-Sweet, C. Detavernier, C. Lavoie, and P. Desjardins, “ Three dimensional reciprocal space measurement by x-ray diffraction using linear and area detectors: Applications to texture and defects determination in oriented thin films and nanoprecipitates,” J. Vac. Sci. Technol., A 31, 021505 (2013).
C. Detavernier, A. S. Özcan, J. Jordan-Sweet, E. A. Stach, J. Tersoff, F. M. Ross, and C. Lavoie, “ An off-normal fibre-like texture in thin films on single-crystal substrates,” Nature 426, 641645 (2003).
S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka, and S. Takagi, “ Self-aligned metal source/drain InxGa1-xAs n-MOSFETs using Ni-InGaAs alloy,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (2010), pp.
X. Zhang, H. Guo, X. Gong, Q. Zhou, Y.-R. Lin, H.-Y. Lin, C.-H. Ko, C. H. Wann, and Y.-C. Yeo, “ In0.7Ga0.3As channel n-MOSFET with self-aligned Ni-InGaAs source and drain,” Electrochem. Solid-State Lett. 14, H60H62 (2011).
A. Guivarc'h, R. Guérin, J. Caulet, A. Poudoulec, and J. Fontenille, “ Metallurgical study of Ni/GaAs contacts. II. Interfacial reactions of Ni thin films on (111) and (001) GaAs,” J. Appl. Phys. 66, 21292136 (1989).
A. Lahav, M. Eizenberg, and Y. Komem, “ Interfacial reactions between Ni films and GaAs,” J. Appl. Phys. 60, 9911001 (1986).
Ivana, Y. Lim Foo, X. Zhang, Q. Zhou, J. Pan, E. Kong, M. H. Samuel Owen, and Y.-C. Yeo, “ Crystal structure and epitaxial relationship of Ni4InGaAs2 films formed on InGaAs by annealing,” J. Vac. Sci. Technol., B 31, 012202 (2013).
P. Shekhter, S. Mehari, D. Ritter, and M. Eizenberg, “ Epitaxial NiInGaAs formed by solid state reaction on In0.53Ga0.47As: Structural and chemical study,” J. Vac. Sci. Technol., B 31, 031205 (2013).
Ivana, J. Pan, Z. Zhang, X. Zhang, H. X. Guo, X. Gong, and Y.-C. Yeo, “ Photoelectron spectroscopy study of band alignment at interface between Ni-InGaAs and In0.53Ga0.47As,” Appl. Phys. Lett. 99, 012105 (2011).
X. Zhang, Ivana, H. X. Guo, X. Gong, Q. Zhou, and Y.-C. Yeo, “ A self-aligned Ni-InGaAs contact technology for InGaAs channel n-MOSFETs,” J. Electrochem. Soc. 159, H511H515 (2012).
ICDD card No. 17-0881.
S. Gaudet, C. Coia, P. Desjardins, and C. Lavoie, “ Metastable phase formation during the reaction of Ni films with Si(001): The role of texture inheritance,” J. Appl. Phys. 107, 093515 (2010).
C. Mocuta, M.-I. Richard, J. Fouet, S. Stanescu, A. Barbier, C. Guichet, O. Thomas, S. Hustache, A. V. Zozulya, and D. Thiaudière, “ Fast pole figure acquisition using area detectors at the DiffAbs beamline–Synchrotron SOLEIL. Erratum,” J. Appl. Crystallogr. 47, 482 (2014).
J.-F. Berar, N. Boudet, P. Breugnon, B. Caillot, B. Chantepie, J.-C. Clemens, P. Delpierre, B. Dinkespiller, S. Godiot, C. Meessen, M. Menouni, C. Morel, P. Pangaud, E. Vigeolas, S. Hustache, and K. Medjoubi, “ {XPAD3} hybrid pixel detector applications,” in Radiation Imaging Detectors, 2008 Proceedings of the 10th International Workshop on Radiation Imaging Detectors [Nucl. Instrum. Methods Phys. Res., Sect. A 607, 233235 (2009)].
T. Thanh, N. Blanc, N. Boudet, E. Bourjot, S. Zhiou, V. Kovacova, P. Rodriguez, F. Nemouchi, and P. Gergaud, “ Full 3d reciprocal space map of thin polycrystalline films for microelectronic applications,” in 2015 IEEE International Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM) (2015), pp. 5356.
C. Boudias and D. Monceau, Carine Crystallography 3.1 ( DIVERGENT SA, Centre de Transfert, 19891998).
K. Momma and F. Izumi, “ VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276 (2011).
D. S. Covita, M. Ay, S. Schlesser, D. Gotta, L. M. Simons, E.-O. Le Bigot, and J. M. F. dos Santos, “ Accurate miscut angle determination for spherically bent bragg crystals,” Rev. Sci. Instrum. 79, 033102 (2008).
S. Lidin, “ Superstructure ordering of intermetallics: B8 structures in the pseudo-cubic regime,” Acta Crystallogr., Sect. B 54, 97108 (1998).
T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S.-L. Zhang, “ Morphological and phase stability of nickelgermanosilicide on Si1-xGex under thermal stress,” J. Appl. Phys. 92, 7193 (2002).
S. Députier, A. Guivarc'h, J. Caulet, A. Poudoulec, B. Guenais, M. Minier, and R. Guérin, “ Etude des interdiffusions en phase solide dans le contact Ni/AlAs,” J. Phys. III 5, 373388 (1995).
D. Hogan and D. Dyson, “ Angles between planes in the hexagonal and tetragonal crystal systems,” Micron 2, 5961 (1970).
B. De Schutter, K. Van Stiphout, N. M. Santos, E. Bladt, J. Jordan-Sweet, S. Bals, C. Lavoie, C. M. Comrie, A. Vantomme, and C. Detavernier, “ Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111),” J. Appl. Phys. 119, 135305 (2016).
R. Chen and S. A. Dayeh, “ Size and orientation effects on the kinetics and structure of nickelide contacts to InGaAs fin structures,” Nano Lett. 15, 37703779 (2015).
R. Guérin and A. Guivarc'h, “ Comment on Phase equilibria of the Ga–Ni–As ternary system [J. Appl. Phys. 80, 543 (1996)],” J. Appl. Phys. 82, 493 (1997).
J. Philibert, F. M. d'Heurle, and P. Gas, “ Diffusion-reaction: The ordered Cu3Au rule and its corollaries,” in Diffusion and Reactions: From Basics to Applications, Solid State Phenomena Vol 41 ( Trans Tech Publications, 1995), pp. 93102.

Data & Media loading...


Article metrics loading...



The solid-state reaction between Ni and InGaAs on an InP substrate was studied by X-ray diffraction (XRD) and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy techniques. Due to the monocrystalline structural aspect of the so-formed intermetallic, it was necessary to measure by XRD a full 3D reciprocal space mapping in order to have a complete overlook over the crystalline structure and texture of the intermetallic. The formation of the intermetallic was studied upon several different Rapid Thermal Annealings on the as-deposited samples. Pole figures analysis shows that the intermetallic features a hexagonal structure () with an NiAs-type (B8) structure. Although only one hexagonal structure is highlighted, the intermetallic exhibits two different domains characterized by different azimuthal orientations, axiotaxial relationship, and lattice parameters. The intermetallic phases seem to present a rather wide range of stoichiometry according to annealing temperature. The texture, structure, and stoichiometry of the intermetallic are discussed along with the evolution of lattice parameters of the Ni-InGaAs phase.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd