Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. N. Dzhavadov and V. N. Ryzhov, Solid State Commun. 236, 23 (2016).
K. A. Brekhov, K. A. Grishunin, D. V. Afanas′ev, S. V. Semin, N. E. Sherstyuk, G. Kh. Kitaeva, E. D. Mishina, Th. Rasing, and A. V. Kimel, JETP Lett. 102, 372 (2015).
P. Ondrejkovic, M. Guennou, M. Kempa, Y. Vysochanskii, G. Garbarino, and J. Hlinka, J. Phys.: Condens. Matter 25, 115901 (2013).
P. Ondrejkovic, M. Kempa, Y. Vysochanskii, P. Saint-Grégoire, P. Bourges, K. Rushchanskii, and J. Hlinka, Phys. Rev. B 86, 224106 (2012).
K. Glukhov, K. Fedyo, J. Banys, and Y. Vysochanskii, Int. J. Mol. Sci. 13, 14356 (2012).
Y. Skrypka, A. Shumelyuk, S. Odoulov, S. Basun, and D. Evans, Opt. Commun. 356, 208 (2015).
A. Shumelyuk, A. Volkov, S. Odoulov, A. Grabar, I. Stoyka, and D. R. Evans, Opt. Express 22, 24763 (2014).
A. Grabar, P. Mathey, and G. Gadret, J. Opt. Soc. Am. B 31, 980 (2014).
P. Mathey, G. Gadret, A. Grabar, I. Stoika, and Y. Vysochanskii, Opt. Commun. 300, 90 (2013).
A. Volkov, A. Shumelyuk, S. Odoulov, and M. Imlau, J. Opt. Soc. Am. B 30, 1102 (2013).
A. Shumelyuk, M. Imlau, V. Dieckmann, H. Badorreck, A. Grabar, and S. Odoulov, Opt. Lett. 37, 4065 (2012).
A. Grabar, P. Mathey, and R. Iegorov, Appl. Phys. B 105, 813 (2011).
M. Imlau, V. Dieckmann, H. Badorreck, and A. Shumelyuk, Opt. Mater. Express 1, 953 (2011).
D. R. Evans, A. Shuymelyuk, G. Cook, and S. Odoulov, Opt. Lett. 36, 454 (2011).
A. Shumelyuk and S. Odoulov, J. Opt. 12, 104015 (2010).
A. Shumelyuk, A. Volkov, S. Odoulov, G. Cook, and D. R. Evans, Appl. Phys. B 100, 101 (2010).
A. Shumelyuk, S. Odoulov, G. Cook, and D. R. Evans, Opt. Lett. 34, 2126 (2009).
A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
I. V. Kedyk, P. Mathey, G. Gadret, A. A. Grabar, K. V. Fedyo, I. M. Stoika, I. P. Prits, and Y. M. Vysochanskii, Appl. Phys. B 92, 549 (2008).
T. Bach, M. Jazbinsek, G. Montemezzani, P. Gunter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, J. Opt. Soc. Am. B 24, 1303 (2007).
M. Jazbinsek, D. Haertle, G. Montemezzani, P. Gunter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 22, 2459 (2005).
S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoyka, J. Opt. Soc. Am. B 13, 2352 (1996).
Y. Vysochanskii, M. Medulych, A. Molnar, K. Glukhov, A. Dziaugys, J. Banys, R. Yevych, and M. Maior, Ferroelectrics 462, 117 (2014).
Y. Vysochanskii, A. Molnar, R. Yevych, K. Glukhov, and M. Medulych, Ferroelectrics 440, 31 (2012).
Y. Vysochanskii, K. Glukhov, M. Maior, K. Fedyo, A. Kohutych, V. Betsa, I. Prits, and M. Gurzan, Ferroelectrics 418, 124 (2011).
Y. Vysochanskii, K. Glukhov, K. Fedyo, and R. Yevych, Ferroelectrics 414, 30 (2011).
J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. ( John Wiley and Sons, New York, New York, 2007).
J.-M. Spaeth and H. Overhof, Point Defects in Semiconductors and Insulators: Determination of Atomic and Electronic Structure from Paramagnetic Hyperfine Interactions, Springer Series of Materials Science Vol. 51 ( Springer, Berlin, 2003).
E. M. Golden, S. A. Basun, A. A. Grabar, I. M. Stoika, N. C. Giles, D. R. Evans, and L. E. Halliburton, J. Appl. Phys. 116, 244107 (2014).
A. T. Brant, L. E. Halliburton, S. A. Basun, A. A. Grabar, S. G. Odoulov, A. Shumelyuk, N. C. Giles, and D. R. Evans, Phys. Rev. B 86, 134109 (2012).
A. T. Brant, L. E. Halliburton, N. C. Giles, S. A. Basun, A. A. Grabar, and D. R. Evans, J. Phys.: Condens. Matter 25, 205501 (2013).
G. Dittmar and H. Schäfer, Z. Naturforsch. 29b, 312 (1974).
B. Scott, M. Pressprich, R. D. Willet, and D. A. Cleary, J. Solid State Chem. 96, 294 (1992).
K. Kuepper, B. Schneider, V. Caciuc, M. Neumann, A. V. Postnikov, A. Ruediger, A. A. Grabar, and Yu. M. Vysochanskii, Phys. Rev. B 67, 115101 (2003).
J. R. Morton and K. F. Preston, J. Magn. Reson. 30, 577 (1978).
S. Yang, A. T. Brant, N. C. Giles, and L. E. Halliburton, Phys. Rev. B 87, 125201 (2013).

Data & Media loading...


Article metrics loading...



Electron paramagnetic resonance (EPR) is used to identify the singly ionized charge state of the Sn vacancy () in single crystals of SnPS (often referred to as SPS). These vacancies, acting as a hole trap, are expected to be important participants in the photorefractive effect observed in undoped SPS crystals. In as-grown crystals, the Sn vacancies are doubly ionized () with no unpaired spins. They are then converted to a stable EPR-active state when an electron is removed (i.e., a hole is trapped) during an illumination below 100 K with 633 nm laser light. The resulting EPR spectrum has -matrix principal values of 2.0079, 2.0231, and 1.9717. There are resolved hyperfine interactions with two P neighbors and one Sn neighbor. The isotropic portions of these hyperfine matrices are 167 and 79 MHz for the two 31P neighbors and 8504 MHz for the one Sn neighbor (this latter value is the average for 117Sn and 119Sn). These vacancies are shallow acceptors with the hole occupying a diffuse wave function that overlaps the neighboring Sn2+ ion and (PS)4− anionic unit. Using a general-order kinetics approach, an analysis of isothermal decay curves of the EPR spectrum in the 107–115 K region gives an activation energy of 283 meV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd