Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, Mater. Sci. Eng., B 59, 390 (1999).
E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Muñoz, and F. Cussó, Semicond. Sci. Technol. 13, 1042 (1998).
T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, J. Cryst. Growth 115, 634 (1991).
H. Morkoc, Handbook of Nitride Semiconductors and Devices ( Wiley-VCH, Weinheim, 2008), Vol. 1.
A. Dadgar, M. Poschenrieder, J. Blaesing, K. Fehse, A. Diez, and A. Krost, Appl. Phys. Lett. 80, 3670 (2002).
M. Sumiya, K. Yoshimura, K. Ohtsuka, and S. Fuke, Appl. Phys. Lett. 76, 2098 (2000).
A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, J. Cryst. Growth 128, 391 (1993).
II-Nitride Semiconductors and their Modern Devices, edited by B. Gill (Oxford Science Publications), ISBN: 978-0-19-968172-3.
M. H. Wong, S. Keller, N. S. Dasgupta, D. J. Denninghoff, S. Kolluri, D. F. Brown, J. Lu, N. A. Fichtenbaum, E. Ahmadi, U. Singisetti, A. Chini, S. Rajan, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Semicond. Sci. Technol. 28, 074009 (2013).
M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karper, A. Lima Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P. J. Schuck, and R. D. Grober, Phys. Status Solidi B 228, 505 (2001).<505::AID-PSSB505>3.0.CO;2-U
M. Sumiya and S. Funke, MRS Internet J. Nitride Semicond. Res. 9, 1 (2004).
A. Yoshikawa and K. Xu, Thin Solid Films 412, 38 (2002).
G. Namkoong, W. A. Doolittle, and A. S. Brown, J. Appl. Phys. 91, 2499 (2002).
B. Alloing, S. Vezian, O. Tottereau, P. Vennegues, E. Beraudo, and J. Zuniga Perez, Appl. Phys. Lett. 98, 011914 (2011).
M. A. Moram, M. J. Kappers, T. B. Joyce, P. R. Chalker, Z. H. Barber, and C. J. Humphreys, J. Cryst. Growth 308, 302 (2007).
M. J. Kappers, M. A. Moram, Y. Zhang, M. E. Vickers, Z. H. Barber, and C. J. Humphreys, Physica B 401–402, 296 (2007).
M. A. Moram, M. J. Kappers, Z. H. Barber, and C. J. Humphreys, J. Cryst. Growth 298, 268 (2007).
M. A. Moram, T. B. Joyce, P. R. Chalker, Z. H. Barber, and C. J. Humphreys, Appl. Surf. Sci. 252, 8385 (2006).
M. A. Moram, Z. H. Barber, C. J. Humphreys, T. B. Joyce, and P. R. Chalker, J. Appl. Phys. 100, 023514 (2006).
L. Tarnawska, A. Giussani, P. Zaumseil, M. A. Schubert, R. Paszkiewicz, O. Brandt, P. Storck, and T. Schroeder, J. Appl. Phys. 108, 063502 (2010).
T. Niermann, D. Zengler, L. Tarnawska, P. Storck, T. Schroeder, and M. Lehmann, J. Appl. Phys. 113, 223501 (2013).
L. Lupina, M. H. Zoellner, T. Niermann, B. Dietrich, G. Capellini, S. B. Thapa, M. Haeberlen, M. Lehmann, P. Storck, and T. Schroeder, Appl. Phys. Lett. 107, 201907 (2015).
M. A. Moram, Z. H. Barber, and C. J. Humphreys, Thin Solid Films 516, 85698572 (2008).
P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
See for quantum espresso, pseudopotential calculations data base.
Time dependence of peak area ratio and peak intensity ratio should be the same, and the difference between both can be used as an additional method to estimate the error bar.
S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 21, 165 (1994).
In the FM mode, the only fitting parameter is the ratio , and also in the other modes, it is hardly possible to treat both R and λ as fitting parameters. Usually, we fixed R at a value within 10% of the estimate from X-ray reflectivity (XRR) measurement and we varied λ.
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy ( Perkin-Elmer Corporation, 1992).
R. Reichl and K. H. Gaukler, Appl. Surf. Sci. 31, 460 (1988).
M. A. Zurbuchen and D. G. Schlom, Mater. Res. Soc. Symp. Proc. 1110, C10-09 (2009).
W. O. Hofer and U. Littmark, Phys. Lett. 71A, 457 (1979).
R. M. Jacobs, J. H. Booske, and D. Morgan, Phys. Rev. B 86, 054106 (2012).
J. K. Gimzewski, D. J. Fabian, L. M. Watson, and S. Affrossman, J. Phys. F: Met. Phys. 7, L305 (1977).
M. Martins, K. Godehusen, T. Richter, Ph. Wernet, and P. Zimmermann, J. Phys. B: At. Mol. Opt. Phys. 39, R79R125 (2006).
M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, Appl. Surf. Sci. 257, 887898 (2010).
D. Marinet, “ Characterisation and modelling of nitrogen plasmas for the deposition of nanostructured GaN using different plasma sources,” PhD thesis, École Polytechnique Fédérale de Lausanne, 2014.
D. Douai, J. Berndt, and J. Winter, in Proceedings of the 14th International Symposium on Plasma Chemistry, 2–6 August 1999, Praha, Czech Republic, edited by M. Hrabovsky, M. Konrad, and V. Kopecky, Vol. 2, p. 637.
J. Oddershede, N. E. Grüner, and G. H. F. Diercksen, Chem. Phys. 97, 303 (1985).
M. Balooch, M. Moalem, W.-E. Wang, and A. V. Hamza, J. Vac. Sci. Technol. A 14, 229 (1996).
J. A. Levinson, E. S. G. Shaqfeh, M. Balooch, and A. V. Hamza, J. Vac. Sci. Technol. A 15, 1902 (1997).
C. Filippi, S. B. Healy, P. Kratzer, E. Pehlke, and M. Scheffler, Phys. Rev. Lett. 89, 166102 (2002).
D. Alfe and M. J. Gillan, J. Phys.: Condens. Matter 18, L451 (2006).
T. Tsuneda, J. W. Song, S. Suzuki, and K. Hirao, J. Chem. Phys. 133, 174101 (2010).
L. Tarnawska, J. Dabrowski, T. Grzela, M. Lehmann, T. Niermann, R. Paszkiewicz, P. Storck, and T. Schroeder, J. Appl. Phys. 113, 213507 (2013).
R Core Team, R, see for A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2013).

Data & Media loading...


Article metrics loading...



Growth mechanism of ScN on ScO for integration of Ga-polar GaN on Si(111) is investigated by in-situ X-ray photoemission spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, and density functional theory (DFT) calculations. The ScN films are grown by molecular beam epitaxy from e-beam evaporated Sc and N plasma. The films grow in a layer-by-layer (Frank–van der Merwe, FM) fashion. Diffusion of nitrogen into ScO and segregation of oxygen onto ScN are observed. The segregated O atoms are gradually removed from the surface by N atoms from the plasma. Experiment and theory show that nitrogen cannot be efficiently incorporated into ScO by exposing it to N plasma alone, and calculations indicate that anion intermixing between ScN and ScO should be weak. On the basis of data, the in-diffusion of N into ScO is attributed mostly to the effect of interaction between ScN ad-dimers on the ScO surface in the initial stage of growth. The segregation of O to the ScN surface is understood as driven by the tendency to compensate build-up of the electric field in the polar ScN film. This segregation is computed to be energetically favorable (by 0.4 eV per O atom) already for a monolayer of ScN; the energy gain increases to 1.0 eV and 1.6 eV per O atom for two and three ScN layers, respectively. Finally, it is verified by DFT that the ScN deposition method in which Sc metallic film is deposited first and then nitridized would lead to strong incorporation of O into the grown film, accompanied by strong reduction of the ScO substrate.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd