Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. R. Gomez, J. C. Zier, R. M. Gilgenbach, D. M. French, W. Tang, and Y. Y. Lau, Rev. Sci. Instrum. 79, 93512 (2008).
L. de' Medici, Phys. Rev. Appl. 5, 24001 (2016).
P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Appl. Phys. 105, 114908 (2009).
C. Pérez-Arancibia, P. Zhang, O. P. Bruno, and Y. Y. Lau, J. Appl. Phys. 116, 124904 (2014).
R. Holm, Electric Contacts: Theory and Application, 4th ed. ( Springer, Berlin, New York, 1967).
R. S. Timsit and A. Luttgen, Appl. Phys. Lett. 108, 121603 (2016).
P. Zhang and Y. Y. Lau, J. Appl. Phys. 108, 44914 (2010).
P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Appl. Phys. 109, 124910 (2011).
P. Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Phys. Appl. Phys. 48, 475501 (2015).
D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).
M. Pedram and S. Nazarian, Proc. IEEE 94, 1487 (2006).
H. Kam, E. Alon, and T.-J. K. Liu, IEEE Int. Electron Devices Meet. 2010,
P. Zhang, Y. Y. Lau, and R. S. Timsit, IEEE Trans. Electron Devices 59, 1936 (2012).
D. Shiffler, T. K. Statum, T. W. Hussey, O. Zhou, and P. Mardahl, in Modern Microwave and Millimeter Wave Power Electronics ( IEEE, Piscataway, NJ, 2005), p. 691.
G. S. Bocharov and A. V. Eletskii, Tech. Phys. 52, 498 (2007).
W. Tang, D. Shiffler, K. Golby, M. LaCour, and T. Knowles, J. Vac. Sci. Technol. B 30, 61803 (2012).
S. B. Fairchild, J. Boeckl, T. C. Back, J. B. Ferguson, H. Koerner, P. T. Murray, B. Maruyama, M. A. Lange, M. M. Cahay, N. Behabtu, C. C. Young, M. Pasquali, N. P. Lockwood, K. L. Averett, G. Gruen, and D. E. Tsentalovich, Nanotechnology 26, 105706 (2015).
D. P. Hunley, S. L. Johnson, R. L. Flores, A. Sundararajan, and D. R. Strachan, J. Appl. Phys. 113, 234306 (2013).
S. Hertel, F. Kisslinger, J. Jobst, D. Waldmann, M. Krieger, and H. B. Weber, Appl. Phys. Lett. 98, 212109 (2011).
M.-H. Bae, Z.-Y. Ong, D. Estrada, and E. Pop, Nano Lett. 10, 4787 (2010).
Q. Ma, N. M. Gabor, T. I. Andersen, N. L. Nair, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Phys. Rev. Lett. 112, 247401 (2014).
K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota, U. Zschieschang, C. Jaye, D. Fischer, H. Klauk, T. Yamamoto, K. Takimiya, M. Ikeda, H. Kuwabara, T. Sekitani, Y.-L. Loo, and T. Someya, Nat. Commun. 3, 723 (2012).
M. J. Kang, E. Miyazaki, I. Osaka, K. Takimiya, and A. Nakao, ACS Appl. Mater. Interfaces 5, 2331 (2013).
J. Shane, Q. Gu, F. Vallini, B. Wingad, J. S. T. Smalley, N. C. Frateschi, and Y. Fainman, Proc. SPIE 8980, 898027 (2014).
P. Zhang, Q. Gu, Y. Y. Lau, and Y. Fainman, IEEE J. Quantum Electron. 52, 2000207 (2016).
Y. Y. Lau, D. Chernin, P. Zhang, and R. M. Gilgenbach, “ A voltage scale for electro-thermal runaway,” in 2013 19th IEEE Pulsed Power Conference PPC (2013), pp. 12.
N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st ed. (Brooks Cole, New York, 1976).
E. Pop, D. A. Mann, K. E. Goodson, and H. Dai, J. Appl. Phys. 101, 93710 (2007).
T. Y. Kim, C.-H. Park, and N. Marzari, Nano Lett. 16, 2439 (2016).
N. Wakeham, A. F. Bangura, X. Xu, J.-F. Mercure, M. Greenblatt, and N. E. Hussey, Nat. Commun. 2, 396 (2011).
S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 88, 105502 (2002).
P. Vincent, S. T. Purcell, C. Journet, and V. T. Binh, Phys. Rev. B 66, 75406 (2002).
J. A. Sanchez, M. P. Menguc, K. F. Hii, and R. R. Vallance, J. Thermophys. Heat Transfer 22, 281 (2008).
R. A. Matula, J. Phys. Chem. Ref. Data 8, 1147 (1979).
J. Lombard, F. Detcheverry, and S. Merabia, J. Phys.: Condens. Matter 27, 15007 (2015).

Data & Media loading...


Article metrics loading...



We examine the effects of temperature dependence of the electrical and thermal conductivities on Joule heating of a one-dimensional conductor by solving the coupled non-linear steady state electrical and thermal conduction equations. The spatial temperature distribution and the maximum temperature and its location within the conductor are evaluated for four cases: (i) constant electrical conductivity and linear temperature dependence of thermal conductivity, (ii) linear temperature dependence of both electrical and thermal conductivities, (iii) the Wiedemann–Franz relation for metals, and (iv) polynomial fits to measured data for carbon nanotube fibers and for copper. For (i) and (ii), it is found that there are conditions under which no steady state solution exists, which may indicate the possibility of thermal runaway. For (i), analytical solutions are constructed, from which explicit expressions for the parameter bounds for the existence of steady state solutions are obtained. The shifting of these bounds due to the introduction of linear temperature dependence of electrical conductivity (case (ii)) is studied numerically. These results may provide guidance in the design of circuits and devices in which the effects of coupled thermal and electrical conduction are important.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd