Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. S. Lysaght, J. Barnett, G. I. Bersuker, J. C. Woicik, D. A. Fischer, B. Foran, H.-H. Tseng, and R. Jammy, “ Chemical analysis of HfO2/Si (100) film systems exposed to NH3 thermal processing,” J. Appl. Phys. 101(2), 024105 (2007).
Y. T. Chen, J. Huang, J. Price, P. Lysaght, D. Veksler, C. Weiland, J. C. Woicik, G. Bersuker, R. Hill, J. Oh, P. D. Kirsch, R. Jammy, and J. C. Lee, “ III–V gate stack interface improvement to enable high mobility 11 nm node CMOS,” in 2012 International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA) (2012), pp. 12.
J. Huang, N. Goel, P. Lysaght, D. Veksler, P. Nagaiah, S. Oktyabrsky, J. Price, H. Zhao, Y. T. Chen, J. C. Lee, J. C. Woicik, P. Majhi, P. D. Kirsch, and R. Jammy, “ Detailed high-k/In0.53Ga0.47As interface understanding to enable improved In0.53Ga0.47As gate stack quality,” in 2011 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) (2011), pp. 12.
A. K. Rumaiz, J. C. Woicik, G. A. Carini, D. P. Siddons, E. Cockayne, E. Huey, P. S. Lysaght, D. A. Fischer, and V. Genova, “ Band alignment of atomic layer deposited HfO2 on clean and N passivated germanium surfaces,” Appl. Phys. Lett. 97(24), 242108 (2010).
J. B. Clemens, S. R. Bishop, J. S. Lee, A. C. Kummel, and R. Droopad, “ Initiation of a passivated interface between hafnium oxide and In(Ga)As(0 0 1)−(4 × 2),” J. Chem. Phys. 132(24), 244701 (2010).
H. Zhao, J. Huang, Y.-T. Chen, J. H. Yum, Y. Wang, F. Zhou, F. Xue, and J. C. Lee, “ Effects of gate-first and gate-last process on interface quality of In0.53Ga0.47As metal-oxide-semiconductor capacitors using atomic-layer-deposited Al2O3 and HfO2 oxides,” Appl. Phys. Lett. 95(25), 253501 (2009).
X. Zhang, H. Guo, X. Gong, Q. Zhou, Y.-R. Lin, H.-Y. Lin, C.-H. Ko, C. H. Wann, and Y.-C. Yeo, “ In0.7Ga0.3As channel n-MOSFET with self-aligned Ni–InGaAs source and drain,” Electrochem. Solid-State Lett. 14(2), H60H62 (2011).
M. Abraham, S. Y. Yu, W. H. Choi, R. T. P. Lee, and S. E. Mohney, “ Very low resistance alloyed Ni-based Ohmic contacts to InP-capped and uncapped n+-In0.53Ga0.47As,” J. Appl. Phys. 116, 164506 (2014).
J. Tersoff, “ Schottky barriers and semiconductor band structures,” Phys. Rev. B 32(10), 69686971 (1985).
A. K. Baraskar, M. A. Wistey, V. Jain, U. Singisetti, G. Burek, B. J. Thibeault, Y. J. Lee, A. C. Gossard, and M. J. W. Rodwell, “ Ultralow resistance, nonalloyed Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 27(4), 20362039 (2009).
U. Singisetti, M. A. Wistey, G. J. Burek, E. Arkun, A. K. Baraskar, Y. Sun, E. W. Kiewra, B. J. Thibeault, A. C. Gossard, C. J. Palmstrøm, and M. J. W. Rodwell, “ InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology,” Phys. Status Solidi C 6(6), 13941398 (2009).
G. J. Burek, M. A. Wistey, U. Singisetti, A. Nelson, B. J. Thibeault, S. R. Bank, M. J. W. Rodwell, and A. C. Gossard, “ Height-selective etching for regrowth of self-aligned contacts using MBE,” J. Cryst. Growth 311(7), 19841987 (2009).
U. Singisetti, M. A. Wistey, J. D. Zimmerman, B. J. Thibeault, M. J. W. Rodwell, A. C. Gossard, and S. R. Bank, “ Ultralow resistance in situ Ohmic contacts to InGaAs/InP,” Appl. Phys. Lett. 93(18), 183502 (2008).
A. Baraskar, M. A. Wistey, V. Jain, E. Lobisser, U. Singisetti, G. Burek, Y. J. Lee, B. Thibeault, A. Gossard, and M. Rodwell, “ Ex situ Ohmic contacts to n-InGaAs,” J. Vac. Sci. Technol. B 28(4), C5I7C5I9 (2010).
L. A. Walsh, G. Hughes, C. Weiland, J. C. Woicik, R. T. P. Lee, W.-Y. Loh, P. Lysaght, and C. Hobbs, “ Ni-(In,Ga)As alloy formation investigated by hard-x-ray photoelectron spectroscopy and x-ray absorption spectroscopy,” Phys. Rev. Appl. 2(6), 064010 (2014).
S. Tanuma, C. J. Powell, and D. R. Penn, “ Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range,” Surf. Interface Anal. 43(3), 689713 (2011).
L. Czornomaz, M. El Kazzi, M. Hopstaken, D. Caimi, P. Mächler, C. Rossel, M. Bjoerk, C. Marchiori, H. Siegwart, and J. Fompeyrine, “ CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs,” Solid-State Electron. 74, 7176 (2012).
Ivana, Y. L. Foo, X. Zhang, Q. Zhou, J. Pan, E. Kong, M. H. S. Owen, and Y.-C. Yeo, “ Crystal structure and epitaxial relationship of Ni4InGaAs2 films formed on InGaAs by annealing,” J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 31(1), 012202 (2013).
X. Zhang, Ivana, H. X. Guo, X. Gong, Q. Zhou, and Y.-C. Yeo, “ A Self-aligned Ni-InGaAs contact technology for InGaAs channel n-MOSFETs,” J. Electrochem. Soc. 159(5), H511H515 (2012).
J. C. Lin, S. Y. Yu, and S. E. Mohney, “ Characterization of low-resistance ohmic contacts to n- and p-type InGaAs,” J. Appl. Phys. 114(4), 044504 (2013).

Data & Media loading...


Article metrics loading...



The electrical and chemical stability of Mo-InGaAs films for source-drain applications in transistor structures has been investigated. It was found that for 5 nm thick Mo films, the sheet resistance remains approximately constant with increasing anneal temperatures up to 500 °C. A combined hard x-ray photoelectron spectroscopy and x-ray absorption spectroscopy analysis of the chemical structure of the Mo-InGaAs alloy system as a function of annealing temperature showed that the interface is chemically abrupt with no evidence of inter-diffusion between the Mo and InGaAs layers. These results indicate the suitability of Mo as a thermally stable, low resistance source-drain contact metal for InGaAs-channel devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd