Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. Osorio Guillen, B. Johansson, and G. A. Gehring, Nat. Mater. 2, 673 (2003).
T. Dietl, Nat. Mater. 2, 646 (2003).
K. Jindal, M. Tomar, R. S. Katiyar, and V. Gupta, AIP Adv. 5, 027117 (2015).
R. Kumari, A. Sahai, and N. Goswami, Prog. Nat. Sci.: Mater. Int. 25, 300 (2015).
N. Salah, A. Hameed, M. Aslam, M. Sh. Abdel-wahab, S. S. Babkair, and F. S. Bahabri, Chem. Eng. J. 291, 115 (2016).
A. Valour, F. Chevire, F. Tessier, F. Grasset, B. Dierre et al., Solid State Sci. 54, 30 (2016).
J. E. Stehr, W. M. Chen, N. K. Reddy, C. W. Tu, and I. A. Buyanova, Sci. Rep. 5, 13406 (2015).
X. Qin, G. Li, L. Xiao, G. Chen, K. Wang, and Q. Wang, Nanoscale Res. Lett. 11, 274 (2016).
K. Y. Wu, Q. Q. Fang, W. N. Wang, C. Zhou, W. J. Huang, J. G. Li, Q. R. Lv, Y. M. Liu, Q. P. Zhang, and H. M. Zhang, J. Appl. Phys. 108, 063530 (2010).
C. F. Yu, S. H. Chen, S. J. Sun, and H. Chou, J. Phys. D: Appl. Phys. 42, 035001 (2009).
E. S. Tuzemen, K. Kara, S. Elagoz, D. K. Takci, I. Altuntas, and R. Esen, Appl. Surf. Sci. 318, 157 (2014).
C.-F. Yu, S.-J. Sun, H.-S. Hsu, and H. Chou, Phys. Lett. A 378, 1965 (2014).
Z. C. Feng, Handbook of ZnO and Related Materials ( Taylor and Francis Group, LLC, 2013).
F. Stavale, L. Pascua, N. Nilius, and H.-J. Freund, J Phys. Chem. C 118, 13693 (2014).
C. Jagadish and S. Pearton, Zinc Oxide-Bulk, Thin Films and Nanostructures ( Elsevier, USA, 2006).
L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C. X. Shan, B. Yao, and D. Z. Shen, Phys. Rev. Lett. 108, 215501 (2012).
K. Jindal, M. Tomar, and V. Gupta, Biosens. Bioelectron. 55, 57 (2014).
K. Jindal, M. Tomar, R. S. Katiyar, and V. Gupta, J. Appl. Phys. 111, 102805 (2012).
V. Gupta and A. Mansingh, J. Appl. Phys. 80, 1063 (1996).
M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth, M. Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer, W. A. Adeagbo, W. Hergert, and A. Ernst, Phys. Rev. B 80, 035331 (2009).
H. K. Yadav, R. S. Katiyar, and V. Gupta, Appl. Phys. Lett. 100, 051906 (2012).
K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso, and C. Rettori, Phys. Rev. B 73, 245213 (2006).
O. Lupan, L. Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, J. Phys. Chem. C 114, 12401 (2010).
J. B. Wang, H. M. Zhong, Z. F. Li, and W. Lu, Appl. Phys. Lett. 88, 101913 (2006).
K. Samanta, A. K. Arora, and R. S. Katiyar, J. Phys. D: Appl. Phys. 45, 185304 (2012).
G. Kaczmarczyk, A. Kaschner, A. Hoffmann, and C. Thomsen, Phys. Rev. B 61, 5353 (2000).
X. Zhu, H.-Z. Wu, D-J. Qiu, Z. Yuan, G. Jin, J. Kong, and W. Shen, Opt. Commun. 283, 2695 (2010).
K. Samanta, S. Dussan, R. S. Katiyar, and P. Bhattacharya, Appl. Phys. Lett. 90, 261903 (2007).
A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).
F. Friedrich, M. A. Gluba, and N. H. Nickel, Appl. Phys. Lett. 95, 141903 (2009).
C. L. Du, Z. B. Gu, Y. M. You, J. Kasim, T. Yu, Z. X. Shen, Z. H. Ni, Y. Ma, G. X. Cheng, and Y. F. Chen, J. Appl. Phys. 103, 023521 (2008).
Y. C. Lin, C. L. Tseng, W. C. Chou, Y. C. Lin, C. L. Tseng, W. C. Chou, and J. L. Shen, J. Phys. Chem. C 115, 19962 (2011).
O. Game, U. Singh, A. A. Gupta, A. Suryawanshi, A. Banpurkar, and S. Ogale, J. Mater. Chem. 22, 17302 (2012).
B. Yang, P. Feng, A. Kumar, R. S. Katiyar, and M. Achermann, J. Phys. D: Appl. Phys. 42, 195402 (2009).
J. M. Erie, Y. Li, M. Ivill, H. S. Kim, S. J. Pearton, B. Gila, D. P. Norton, and F. Ren, Appl. Surf. Sci. 254, 5941 (2008).
M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, AIP Adv. 1, 022105 (2011).
J. E. Stehr, D. M. Hofmann, and B. K. Meyer, J. Appl. Phys. 112, 103511 (2012).
C. Peng, Y. Liang, K. Wang, Y. Zhang, G. Zhao, and Y. Wang, J. Phys. Chem. C 116, 9709 (2012).
J. G. Reynolds, C. L. Reynolds, Jr., A. Mohanta, J. F. Muth, J. E. Rowe, H. O. Everitt, and D. E. Aspnes, Appl. Phys. Lett. 102, 152114 (2013).
D. Y. Yong, H. Y. He, Z. K. Tang, S.-H. Wei, and B. C. Pan, Phys. Rev. B 92, 235207 (2015).
N. H. Alvi, K. U. Hasan, O. Nur, and M. Willander, Nanoscale Res. Lett. 6, 130 (2011).
X. Zhu, H. Wu, Z. Yuan, J. Kong, and W. Shen, J. Raman Spectrosc. 40, 2155 (2009).
Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, and M. Grundmann, Appl. Phys. Lett. 92, 082508 (2008).
S. Mal, S. Nori, C. Jin, J. Narayan, S. Nellutla, A. I. Smirnov, and J. T. Prater, J. Appl. Phys. 108, 073510 (2010).
X. Zhang, Y. H. Cheng, L. Y. Li, Hui Liu, X. Zuo, G. H. Wen, L. Li, R. K. Zheng, and S. P. Ringer, Phys. Rev. B 80, 174427 (2009).
Y. Belghazi, G. Schmerber, S. Colis, J. L. Rehspringer, A. Dinia, and A. Berrada, Appl. Phys. Lett. 89, 122504 (2006).
P. Li, S. H. Deng, Y. B. Li, L. Zhang, G. H. Liu, and J. Huang, Chin. J. Chem. Phys. 25, 48 (2012).
X. Zuo, S.-D. Yoon, A. Yang, W.-H. Duan, C. Vittoria, and V. G. Harris, J. Appl. Phys. 105, 07C508 (2009).
W. A. Adeagbo, G. Fischer, A. Ernst, and W. Hergert, J. Phys.: Condens. Matter 22, 436002 (2010).

Data & Media loading...


Article metrics loading...



N doped ZnO (ZnO:N) thin films are prepared by pulsed laser deposition in an oxygen environment using ZnO:N targets with varying nitrogen doping concentrations (1%–10%). The impact of nitrogen incorporation on the microstructural properties of prepared ZnO:N thin films has been studied using Raman scattering. The Raman shift of E(high) mode towards lower frequencies indicate the substitution of N at O lattice sites (N). A local vibrational mode corresponding to Zn–N was observed at 480.3 cm−1 in N doped ZnO thin films and highlights the increased strength of the Zn–N bond in the ZnO lattice. Photoluminescence studies reveal the dominant near band edge emission peak in the ultraviolet region and the absence of deep level emission due to defects. The ZnO:N thin films are found to possess room temperature ferromagnetism. N is found to play a significant role in arising ferromagnetism in ZnO and possess a solubility limit of 8% for uniform and homogeneous atomic substitution in ZnO. The present study confirms the promising application of N doped ZnO (ZnO:N) thin films for room temperature spintronics applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd