Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. V. Khishchenko, V. E. Fortov, and I. V. Lomonosov, AIP Conf. Proc. 429, 103106 (1998).
Methods of Investigation the Properties of Materials Under Intense Dynamic Loading, edited by M. V. Zhernokletov ( Russian Federal Nuclear Center, Sarov, 2003) [in Russian].
D. D. Bloomquist and S. A. Sheffield, J. Appl. Phys. 51, 5260 (1980).
Z. Rosenberg and Y. Partom, J. Appl. Phys. 56, 1921 (1984).
A. N. Dremin, V. P. Ivanov, and A. N. Mikhailov, Combust. Explos. Shock Waves 9, 784 (1973).
D. D. Bloomquist and S. A. Sheffield, Appl. Phys. Lett. 38, 185 (1981).
M. J. Morley, D. J. Chapman, and W. G. Proud, AIP Conf. Proc. 1195, 599602 (2009).
V. V. Sil'vestrov, S. A. Bordzilovskii, M. A. Gulevich, S. M. Karakhanov, V. V. Pai, and A. V. Plastinin, “ Temperature measurement of the shock-compressed emulsion matrix,” Combust. Explos. Shock Waves 52, 248 (2016).
Ya. B. Zel'dovich, S. B. Kormer, M. V. Sinitsyn, and A. I. Kuryapin, Dokl. Akad. Nauk 122, 48 (1958) [in Russian].
S. B. Kormer, Sov. Phys. Usp. 11, 229 (1968).
K. V. Khishchenko, High Temp. 35, 991 (1997).
K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, and O. F. Shlenskii, Phys. Dokl. 41, 304 (1996)
K. V. Khishchenko, I. V. Lomonosov, V. E. Fortov, and O. F. Shlenskii, Translated from Dokl. Akad. Nauk 349, 322 (1996).
R. L. Gustavsen, S. A. Sheffield, and R. R. Alcon, AIP Conf. Proc. 429, 739742 (1998).
L. F. Gudarenko, M. V. Zhernokletov, S. I. Kirshanov, A. E. Kovalev, V. G. Kudel'kin, T. S. Lebedeva, A. I. Lomaikin, M. A. Mochalov, G. V. Simakov, A. N. Shuikin, and I. M. Voskoboinikov, Combust. Explos. Shock Waves 40, 344 (2004).
R. Menikoff, J. Appl. Phys. 96, 7696 (2004).
W. G. Proud, N. K. Bourne, and J. E. Field, AIP Conf. Proc. 429, 801804 (1998).
J. C. F. Millett and N. K. Bourne, J. Appl. Phys. 92, 6590 (2002).
LASL Shock Hugoniot Data, edited by S. P. Marsh ( University of California Press, Berkeley, 1980).
K. K. Krupnikov and V. P. Krupnikova, in Proceedings. of the 19th International Symposium on Shock Waves in Condensed Matter and Heterogeneous Media, Marseille, France, 26–30 July 1993, edited by R. Brun and L. Z. Dumitrescu ( Springer-Verlag, Berlin, Heidelberg, New York, 1995), pp. 301306.
S. A. Bordzilovskii, S. M. Karakhanov, and K. V. Khishchenko, Combust. Explos. Shock Waves 49, 121 (2013).
C. E. Morris, J. N. Fritz, and R. G. McQueen, J. Chem. Phys. 80, 5203 (1984).
L. V. Al'tshuler, Sov. Phys. Usp. 8, 52 (1965).
L. V. Al'tshuler, A. V. Bushman, V. E. Fortov, and I. I. Shariptdzhanov, Numer. Methods Continuum Mech. 7, 5 (1976).
A. V. Bushman, M. V. Zhernokletov, I. V. Lomonosov et al., Dokl. Ross. Akad. Nauk 329, 581 (1993).
G. R. Cowan, Trans. Metall. Soc. AIME 233(6), 1120 (1965).
S. A. Bordzilovsky, M. S. Voronin, S. M. Karakhanov, and L. A. Merzhievsky, Dokl. Phys. 59(4), 176 (2014).
G. Yu. Katsnel'son and G. A. Balaev, Polymer Materials ( Khimiya, Moscow, 1982) [in Russian].
R. G. McQueen, S. P. Marsh, J. W. Taylor et al., High-Velocity Impact Phenomena, edited by R. Kinslow ( Academic Press, New York and London, 1970).
S. A. Bordzilovskii and S. M. Karakhanov, Combust. Explos. Shock Waves 43, 590 (2007).
S. A. Bordzilovskii, S. M. Karakhanov, and D. S. Bordzilovskii, Combust. Explos. Shock Waves 46, 81 (2010).
V. A. Karachinov, S. B. Toritsin, and D. V. Karachinov, Meas. Tech. 51, 762 (2008).
Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena ( Fizmatgiz, Moscow, 1963); edited by W. D. Hayes and R. F. Probstein ( Academic Press, New York, 1967).
V. N. Zharkov and V. A. Kalinin, Equations of State for Solids at High Pressures and Temperatures ( Nauka, Moscow, 1968) [in Russian].
A. V. Bushman and V. E. Fortov, Phys. Usp. 26, 465 (1983).
G. V. Kozlov and D. S. Sanditov, Anharmonic Effects and Physicomechanical Properties of Polymers ( Nauka, Novosibirsk, 1994) [in Russian].
R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Substances ( Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov, 2001) [in Russian].
L. A. Merzhievskii, Combust. Explos. Shock Waves 34, 679 (1998).
B. Wunderlich, Thermal Analysis of Polymeric Materials ( Springer-Verlag, Berlin, Heidelberg, 2005), p. 894.
E. D. Emmons, R. G. Kraus, Srividya S. Duvvuri, J. S. Thompson, and A. M. Covington, J. Polym. Sci. Part B: Polym. Phys. 45, 358 (2007).
C. H. Neel, L. C. Chhabildas, and W. D. Reinhart, AIP Conf. Proc. 1426, 771 (2012).
W. D. Reinhart and L. C. Chhabildas, in Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, edited by M. D. Furnish, M. Elert, T. P. Russell, and C. T. White (2005), Vol. 131.
M. B. Boslough, J. Appl. Phys. 58, 3394 (1985).
S.-N. Luo, J. A. Akins, T. J. Ahrens, and P. D. Asimow, J. Geophys. Res. 109, B05205, doi:10.1029/2003JB002860 (2004).
A. M. Molodets, D. V. Shakhrai, A. S. Savinykh, A. A. Golyshev, and V. V. Kim, Combust. Explos. Shock Waves 49, 731 (2013).
S. A. Bordzilovskii1 and S. M. Karakhanov, Combust. Explos. Shock Waves 38, 722 (2002).
G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, J. Chem. Phys. 76(12), 6282 (1982).

Data & Media loading...


Article metrics loading...



This paper presents the results of computational and experimental studies of the temperature along the shock adiabat for three polymers. Measurements of the brightness temperatures of shock-compressed epoxy resin and polymethylmethacrylate and the brightness and color temperatures of shock-compressed polytetrafluoroethylene were carried out. The temperatures of the shock-compressed polymethylmethacrylate were determined in the range 1390–1900 K for shock pressures of 22–39 GPa. Similar measurements performed for epoxy resin in the pressure range of 18–40 GPa showed values of 940–1900 K, and the temperatures of polytetrafluoroethylene in the pressure range of 30–50 GPa were equal to 2000–3200 K. The equation of state for the three polymers with a nonspherical strain tensor was constructed to describe shock-wave and high-temperature processes in a wide range of thermodynamic parameters. In the proposed model, two Grüneisen parameters were used: the thermodynamic parameter corresponding to intrachain vibrations and the lattice parameter representing the contribution of interchain vibrations. The brightness temperatures of shocked-compressed polymethylmethacrylate and epoxy resin showed a good agreement with calculations using the proposed model and with the results of earlier calculation methods. Time dependences of the observed intensity of light were used to determine the absorption coefficients of the shocked polymers and estimate the effective thickness of the radiating layer. A typical feature of all the polymers is the width of the radiating layer of 0.8 to 2.5 mm, depending on the material and shock pressure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd