Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/14/10.1063/1.4958846
1.
E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4250
2.
A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2731
3.
J.-Y. Bigot and M. Vomir, Ann. Phys. 525, 2 (2013).
http://dx.doi.org/10.1002/andp.201200199
4.
C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E. F. Aziz, M. Wietstruk, H. A. Dürr, and W. Eberhardt, Nat. Mater. 6, 740 (2007).
http://dx.doi.org/10.1038/nmat1985
5.
C. Boeglin, E. Beaurepaire, V. Halté, V. López-Flores, C. Stamm, N. Pontius, H. A. Dürr, and J.-Y. Bigot, Nature 465, 458 (2010).
http://dx.doi.org/10.1038/nature09070
6.
B. Vodungbo et al., Nat. Commun. 3, 999 (2012).
http://dx.doi.org/10.1038/ncomms2007
7.
C. La-O-Vorakiat, M. Siemens, M. M. Murnane, H. C. Kapteyn, S. Mathias, M. Aeschlimann, P. Grychtol, R. Adam, C. M. Schneider, J. M. Shaw, H. Nembach, and T. J. Silva, Phys. Rev. Lett. 103, 257402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257402
8.
C. E. Graves et al., Nature Materials 12, 293 (2013).
http://dx.doi.org/10.1038/nmat3597
9.
A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Fröhlisch, P. M. Oppeneer, and C. Stamm, Nat. Mater. 12, 332 (2013).
http://dx.doi.org/10.1038/nmat3546
10.
B. Frietsch, J. Bowlan, R. Carley, M. Teichmann, S. Wienholdt, D. Hinzke, U. Nowak, K. Carva, P. M. Oppeneer, and M. Weinelt, Nat. Commun. 6, 8262 (2015).
http://dx.doi.org/10.1038/ncomms9262
11.
H.-S. Rhie, H. A. Dürr, and W. Eberhardt, Phys. Rev. Lett. 90, 247201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.247201
12.
E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin, and S. De Silvestri, Phys. Rev. B 78, 174422 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.174422
13.
E. Carpene, F. Boschini, H. Hedayat, C. Piovera, C. Dallera, E. Puppin, M. Mansurova, M. Münzenberg, X. Zhang, and A. Gupta, Phys. Rev. B 87, 174437 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.174437
14.
B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, and W. J. M. de Jonge, Phys. Rev. Lett. 95, 267207 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.267207
15.
W. Heisenberg, Z. Phys. 38, 411 (1926).
http://dx.doi.org/10.1007/BF01397160
16.
P. A. M. Dirac, Proc. R. Soc. A 112, 661 (1926).
http://dx.doi.org/10.1098/rspa.1926.0133
17.
E. Stoner, Proc. R. Soc. A 154, 565 (1936);
O. Gunnarson, J. Phys. F: Met. Phys. 6, 587 (1976).
http://dx.doi.org/10.1088/0305-4608/6/4/018
18.
R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202 (2014).
http://dx.doi.org/10.1088/0953-8984/26/10/103202
19.
T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004);
http://dx.doi.org/10.1109/TMAG.2004.836740
M. Fähnle et al., Phys. Rev. B 73, 172408 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.172408
20.
M. I. D'yakonov and V. I. Perel, Phys. Lett. 35, 459 (1971);
http://dx.doi.org/10.1016/0375-9601(71)90196-4
J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999);
http://dx.doi.org/10.1103/PhysRevLett.83.1834
S. Zhang, Phys. Rev. Lett. 85, 393 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.393
21.
M. Gradhand, M. Czerner, D. V. Fedorov, P. Zahn, B. Yu. Yavorsky, L. Szunyogh, and I. Mertig, Phys. Rev. B 80, 224413 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224413
22.
The degree of mixture is given by the exchange interaction separating the spin-split bands over its counterpart, the spin-orbit interaction, mixing them and are different at each k-point even in the same band.
23.
N. H. Long, P. Mavropoulos, S. Heers, B. Zimmermann, Y. Mokrousov, and S. Blügel, Phys. Rev. B 88, 144408 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.144408
24.
D. Steiauf and M. Fähnle, Phys. Rev. B 79, 140401(R) (2009);
http://dx.doi.org/10.1103/PhysRevB.79.140401
C. Illg, M. Haag, and M. Fähnle, Phys. Rev. B 88, 214404 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.214404
25.
B. Andres, M. Christ, C. Gahl, J. Kirschner, M. Wietstruk, and M. Weinelt, Phys. Rev. Lett. 115, 207404 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.207404
26.
M. Born and J. R. Oppenheimer, Ann. Phys. 389, 457 (1927).
http://dx.doi.org/10.1002/andp.19273892002
27.
F. Dalla Longa, J. T. Kohlhepp, W. J. M. de Jonge, and B. Koopmans, Phys. Rev. B 75, 224431 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.224431
28.
T. F. Nova, A. Cartella, A. Cantaluppi, M. Foerst, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, e-print arXiv:1512.06351;
S. Mährlein, I. Radu, P. Maldonado, A. Paarmann, M. Gensch, A. Kalashnikova, R. Pisarev, P. Oppeneer, M. Wolf, and T. Kampfrath, “ Ultrafast demagnetization of a ferrimagnetic insulator driven by selective phonon excitation,” German Physical Society Spring Meeting 2015; available at http://www.dpg-verhandlungen.de/year/2015/conference/berlin/part/ma/session/27/contribution/10.
29.
D. Steiauf, C. Illg, and M. Fähnle, J. Phys.: Conf. Ser. 200, 042024 (2010).
http://dx.doi.org/10.1088/1742-6596/200/4/042024
30.
N. F. Mott, Proc. R. Soc. London, Ser. A 153, 699717 (1936).
http://dx.doi.org/10.1098/rspa.1936.0031
31.
T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.7099
32.
M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2472
33.
J. Barnaś, A. Fuss, R. E. Camley, P. Grünberg, and W. Zinn, Phys. Rev. B 42, 8110 (1990)
http://dx.doi.org/10.1103/PhysRevB.42.8110
34.
M. Battiato, K. Carva, and P. M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010)
http://dx.doi.org/10.1103/PhysRevLett.105.027203
35.
A. Melnikov, I. Razdolski, T. O. Wehling, E. Th. Papaioannou, V. Roddatis, P. Fumagalli, O. Aktsipetrov, A. I. Lichtenstein, and U. Bovensiepen, Phys. Rev. Lett. 107, 076601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076601
36.
G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11, 391 (2012).
http://dx.doi.org/10.1038/nmat3301
37.
M. Battiato, K. Carva, and P. M. Oppeneer, Phys. Rev. B 86, 024404 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.024404
38.
C. Gyung-Min, B.-C. Min, K.-J. Lee, and D. G. Cahill, Nat. Commun. 5, 4334 (2014).
http://dx.doi.org/10.1038/ncomms5334
39.
S. Kaltenborn and H. C. Schneider, Ultrafast Magnetism I, Springer Proceedings in Physics Vol. 159 (Springer-Verlag GmbH, Heidelberg, 2014), pp. 169171.
40.
R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
41.
D. Brockmann and T. Geisel, Phys. Rev. Lett. 90, 170601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.170601
42.
A. Slachter, F. L. Bakker, J. P. Adam, and B. J. van Wees, Nat. Phys. 6, 879 (2010).
http://dx.doi.org/10.1038/nphys1767
43.
K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).
http://dx.doi.org/10.1063/1.3507386
44.
G. Tveten, A. Brataas, and Y. Tserkovnyak, Phys. Rev. B 92, 180412(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.92.180412
45.
A. Hoffmann and S. D. Bader, Phys. Rev. Appl. 4, 047001 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.047001
46.
Editorial, Nat. Nanotechnol. 10, 185 (2015).
http://dx.doi.org/10.1038/nnano.2015.50
47.
See https://www.everspin.com/ for information on the embedded MRAM technology.
48.
H.-S. Philip Wong and S. Salahuddin, Nat. Nanotechnol. 10, 191 (2015).
http://dx.doi.org/10.1038/nnano.2015.50
49.
B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, Phys. Rep. 507, 107 (2011).
http://dx.doi.org/10.1016/j.physrep.2011.06.003
50.
See http://public.itrs.net/ for International Technology Roadmap for Semiconductors (ITRS)
51.
T. Kampfrath, K. Tanaka, and K. A. Nelson, Nat. Photonics 7, 680 (2013);
http://dx.doi.org/10.1038/nphoton.2013.184
Editorial, Nat. Photonics 7, 665 (2013).
http://dx.doi.org/10.1038/nphoton.2013.239
52.
G.-X. Miao, M. Münzenberg, and J. S. Moodera, Rep. Prog. Phys. 74, 036501 (2011).
http://dx.doi.org/10.1088/0034-4885/74/3/036501
53.
Z. Jin, A. Tkach, F. Casper, V. Spetter, H. Grimm, A. Thomas, T. Kampfrath, M. Bonn, M. Kläui, and D. Turchinovich, Nat. Phys. 11, 761 (2015).
http://dx.doi.org/10.1038/nphys3384
54.
A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit, and B. Koopmans, Nat. Commun. 5, 4333 (2014).
http://dx.doi.org/10.1038/ncomms5333
55.
M. Savoini, C. Piovera, C. Rinaldi, E. Albisetti, D. Petti, A. R. Khorsand, L. Duò, C. Dallera, M. Cantoni, R. Bertacco, M. Finazzi, E. Carpene, A. V. Kimel, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 89, 140402(R) (2014).
http://dx.doi.org/10.1103/PhysRevB.89.140402
56.
J. C. Leutenantsmeyer, M. Walter, V. Zbarsky, M. Münzenberg, R. Gareev, K. Rott, A. Thomas, G. Reiss, P. Peretzki, H. Schuhmann, M. Seibt, M. Czerner, and C. Heiliger, SPIN 3, 1350002 (2013).
http://dx.doi.org/10.1142/S2010324713500021
57.
M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg, M. Schäfers, D. Ebke, G. Reiss, A. Thomas, P. Peretzki, M. Seibt, J. S. Moodera, M. Czerner, M. Bachmann, and C. Heiliger, Nat. Mater. 10, 742 (2011).
http://dx.doi.org/10.1038/nmat3076
58.
A. Pushp, T. Phung, C. Rettner, B. P. Hughes, S.-H. Yang, and S. S. P. Parkin, Proc. Natl. Acad. Sci. U.S.A 112, 6585 (2015).
http://dx.doi.org/10.1073/pnas.1507084112
59.
W. He, T. Zhu, X.-Q. Zhang, H.-T. Yang, and Z.-H. Chenga, Sci. Rep. 3, 2883 (2013).
http://dx.doi.org/10.1038/srep02883
60.
A. Manchon and S. Zhang, Phys. Rev. B 78, 212405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.212405
61.
L. Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman, Science 336, 555 (2012).
http://dx.doi.org/10.1126/science.1218197
62.
I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, and P. Gambardella, Nat. Mater. 9, 230 (2010).
http://dx.doi.org/10.1038/nmat2613
63.
T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and T. Kampfrath, Nat. Photonics 10, 483488 (2016).
http://dx.doi.org/10.1038/nphoton.2016.91
64.
T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, Nat. Nanotechnol. 8, 256 (2013)
http://dx.doi.org/10.1038/nnano.2013.43
65.
M. Tonouchi, Nat. Photonics 1, 97 (2007);
http://dx.doi.org/10.1038/nphoton.2007.3
H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).
http://dx.doi.org/10.1109/22.989974
66.
Y. Kawano and K. Ishibashi, Nat. Photonics 2, 618 (2008).
http://dx.doi.org/10.1038/nphoton.2008.157
67.
A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Nano Lett. 8, 3766 (2008).
http://dx.doi.org/10.1021/nl802086x
68.
T. J. Huisman, R. V. Mikhaylovskiy, J. D. Costa, F. Freimuth, E. Paz, J. Ventura, P. P. Freitas, S. Blügel, Y. Mokrousov, Th. Rasing, and A. V. Kimel, Nat. Nanotechnol. 11, 455458 (2016).
http://dx.doi.org/10.1038/nnano.2015.331
69.
E. Beaurepaire et al., Appl. Phys. Lett. 84, 3465 (2004).
http://dx.doi.org/10.1063/1.1737467
70.
V. Mikhaylovskiy, E. Hendry, A. Secchi, J. H. Mentink, M. Eckstein, A. Wu, R. V. Pisarev, V. V. Kruglyak, M. I. Katsnelson, T. Rasing, and A. V. Kimel, Nat. Commun. 6, 8190 (2015).
http://dx.doi.org/10.1038/ncomms9190
71.
S. Mizukami, A. Sakuma, A. Sugihara, K. Z. Suzuki, and R. Ranjbar, Scr. Mater. 118, 70 (2016).
http://dx.doi.org/10.1016/j.scriptamat.2016.01.045
72.
S. Mizukami, A. Sugihara, S. Iihama, Y. Sasaki, K. Z. Suzuki, and T. Miyazaki, Appl. Phys. Lett. 108, 012404 (2016).
http://dx.doi.org/10.1063/1.4939447
73.
C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.047601
74.
Ultra-High-Density Magnetic Recording: Storage Materials and Media Designs, edited by G. Varvaro and F. Casoli ( Pan Stanford, 2016).
75.
H. Coufal, L. Dhar, and C. D. Mee, MRS Bulletin 31, 374 (2006).
http://dx.doi.org/10.1557/mrs2006.96
76.
C. Vogler, C. Abert, F. Bruckner, and D. Suess, Appl. Phys. Lett. 108, 102406 (2016).
http://dx.doi.org/10.1063/1.4943629
77.
B. C. Stipe et al., Nat. Photonics 4, 484 (2010).
http://dx.doi.org/10.1038/nphoton.2010.90
78.
B. Hebler, A. Hassdenteufel, P. Reinhardt, H. Karl, and M. Albrecht, Front. Mater. 3, 8 (2016).
http://dx.doi.org/10.3389/fmats.2016.00008
79.
S. Mangin, M. Gottwald, C.-H. Lambert, D. Steil, V. Uhlír, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014).
http://dx.doi.org/10.1038/nmat3864
80.
I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, and A. V. Kimel, Nature 472, 205 (2011).
http://dx.doi.org/10.1038/nature09901
81.
D. Hinzke, U. Atxitia, K. Carva, P. Nieves, O. Chubykalo-Fesenko, P. M. Oppeneer, and U. Nowak, Phys. Rev. B 92, 054412 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.054412
82.
A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, Nature 435, 655657 (2005).
http://dx.doi.org/10.1038/nature03564
83.
M. Berritta, R. Mondal, K. Carva, and P. M. Oppeneer, e-print arXiv:1604.01188.
84.
T. A. Ostler et al., Nat. Commun. 3, 666 (2011).
http://dx.doi.org/10.1038/ncomms1666
85.
C.-H. Lambert, S. Mangin, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Science 345, 1337 (2014).
http://dx.doi.org/10.1126/science.1253493
86.
J. Gorchon, Y. Yang, and J. Bokor, J., “ Model for multi-shot all-thermal all-optical switching in ferromagnets,” e-print arXiv:1604.06441;
R. John, M. Berritta, D. Hinzke, C. Müller, T. Santos, H. Ulrichs, P. Nieves, J. Walowski, R. Mondal, O. Chubykalo-Fesenko, J. McCord, P. M. Oppeneer, U. Nowak, and M. Münzenberg, e-print arXiv:1606.08723;
Y. K. Takahashi, R. Medapalli, S. Kasai, J. Wang, K. Ishioka, S. H. Wee, O. Hellwig, K. Hono, and E. E. Fullerton, e-print arXiv:1604.03488.
87.
M. S. El Hadri, P. Pirro, C.-H. Lambert, N. Bergeard, S. Petit-Watelot, M. Hehn, G. Malinowski, F. Montaigne, Y. Quessab, R. Medapalli, E. E. Fullerton, and S. Mangin, Appl. Phys. Lett. 108, 092405 (2016).
http://dx.doi.org/10.1063/1.4943107
88.
P. Elliott, K. Krieger, J. K. Dewhurst, S. Sharma, and E. K. U. Gross, New J. Phys. 18, 013014 (2016).
http://dx.doi.org/10.1088/1367-2630/18/1/013014
89.
J. Simoni, M. Stamenova, and S. Sanvito, e-print arXiv:1604.06262.
90.
P. Elliott, T. Müller, J. K. Dewhurst, S. Sharma, and E. K. U. Gross, e-print arXiv:1603.05603.
91.
R. J. Elliott, Phys. Rev. 96, 266 (1954).
http://dx.doi.org/10.1103/PhysRev.96.266
92.
M. Fähnle, J. Seib, and C. Illg, Phys. Rev. B 82, 144405 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.144405
93.
K. Carva, M. Battiato, and P. Oppeneer, Phys. Rev. Lett. 107, 207201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.207201
94.
Y. Yafet, Solid State Phys. 14, 1 (1963).
http://dx.doi.org/10.1016/S0081-1947(08)60259-3
95.
R. N. Edmonds, M. R. Harrison, and P. P. Edwards, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 82, 265 (1985).
http://dx.doi.org/10.1039/pc9858200265
96.
F. Beuneu and P. Monod, Phys. Rev. B 18, 2422 (1978);
http://dx.doi.org/10.1103/PhysRevB.18.2422
P. Monod and F. Beuneu, Phys. Rev. B 19, 911 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.911
97.
B. M. Khabibullin and É. G. Kharakhash'yan, Sov. Phys. - Usp. 16, 806 (1974).
http://dx.doi.org/10.1070/PU1974v016n06ABEH004091
98.
V. Kamberský, Phys. Rev. B 76, 134416 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.134416
99.
M. Münzenberg and J. S. Moodera, Phys. Rev. B 70, 060402(R) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.060402
100.
M. B. Stearns, J. Magn. Magn. Mater. 5, 167 (1977).
http://dx.doi.org/10.1016/0304-8853(77)90185-8
101.
J. Walowski, G. Müller, M. Djordjevic, M. Münzenberg, M. Kläui, C. A. F. Vaz, and J. A. C. Bland, Phys. Rev. Lett. 101, 237401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.237401
102.
I. Radu, G. Woltersdorf, M. Kiessling, A. Melnikov, U. Bovensiepen, J.-U. Thiele, and C. H. Back, Phys. Rev. Lett. 102, 117201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.117201
103.
G. Müller, J. Walowski, M. Djordjevic, G.-X. Miao, A. Gupta, A. V. Ramos, K. Gehrke, V. Moshnyaga, K. Samwer, J. Schmalhorst, A. Thomas, A. Hütten, G. Reiss, J. S. Moodera, and M. Münzenberg, Nat. Mater. 8, 56 (2009).
http://dx.doi.org/10.1038/nmat2341
104.
D. Steil, O. Schmitt, R. Fetzer, T. Kubota, H. Naganuma, M. Oogane, Y. Ando, A. K. Suszka, O. Idigoras, G. Wolf, B. Hillebrands, A. Berger, M. Aeschlimann, and M. Cinchetti, New J. Phys. 16, 063068 (2014).
http://dx.doi.org/10.1088/1367-2630/16/6/063068
105.
D. Steil et al., Phys. Rev. Lett. 105, 217202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.217202
106.
D. Steil, PhD thesis, University of Kaiserslautern, 2012.
107.
A. Mann, J. Walowski, M. Münzenberg, S. Maat, M. J. Carey, J. R. Childress, C. Mewes, D. Ebke, V. Drewello, G. Reiss, and A. Thomas, Phys. Rev. X 2, 041008 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.041008
108.
J. F. Cooke, J. W. Lynn, and H. L. Davis, Phys. Rev. B 21, 4118 (1980);
http://dx.doi.org/10.1103/PhysRevB.21.4118
J. A. Blackman, T. Morgan, and J. F. Cooke, Phys. Rev. Lett. 55, 2814 (1985);
http://dx.doi.org/10.1103/PhysRevLett.55.2814
D. M. Paul, P.-W. Mitchell, H. A. Mook, and U. Steigenberger, Phys. Rev. B 38, 580 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.580
109.
A. T. Costa, Jr., R. B. Muniz, and D. L. Mills, Phys. Rev. B 69, 064413 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.064413
110.
B. Y. Mueller, A. Baral, S. Vollmar, M. Cinchetti, M. Aeschlimann, H. C. Schneider, and B. Rethfeld, Phys. Rev. Lett. 111, 167204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.167204
111.
A. Manchon, L. Xu, Q. Li, and S. Zhang, Phys. Rev. B 85, 064408 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064408
112.
J. Fidler and T. Schrefl, J. Phys. D 33, R135 (2000).
http://dx.doi.org/10.1088/0022-3727/33/15/201
113.
U. Nowak, O. N. Mryasov, R. Wieser, K. Guslienko, and R. W. Chantrell, Phys. Rev. B 72, 172410 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.172410
114.
N. Kazantseva, U. Nowak, R. W. Chantrell, J. Hohlfeld, and A. Rebei, Europhys. Lett. 81, 27004 (2008).
http://dx.doi.org/10.1209/0295-5075/81/27004
115.
U. Atxitia, O. Chubykalo-Fesenko, J. Walowski, A. Mann, and M. Münzenberg, Phys. Rev. B 81, 174401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.174401
116.
U. Atxitia, O. Chubykalo-Fesenko, N. Kazantseva, D. Hinzke, U. Nowak, and R. W. Chantrell, Appl. Phys. Lett. 91, 232507 (2007).
http://dx.doi.org/10.1063/1.2822807
117.
M. Djordjevic and M. Münzenberg, Phys. Rev. B 75, 012404 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.012404
118.
N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, and O. Chubykalo-Fesenko, Phys. Status Solidi B 244, 4389 (2007).
http://dx.doi.org/10.1002/pssb.200777101
119.
N. Kazantseva, D. Hinzke, U. Nowak, R. W. Chantrell, U. Atxitia, and O. Chubykalo-Fesenko, Phys. Rev. B 77, 184428 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184428
120.
D. A. Garanin and O. Chubykalo-Fesenko, Phys. Rev. B 70, 212409 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.212409
121.
W. F. Brown, Phys. Rev. 130, 1677 (1963);
http://dx.doi.org/10.1103/PhysRev.130.1677
O. Chubykalo, J. D. Hannay, M. A. Wongsam, R. W. Chantrell, and J. M. Gonzalez, Phys. Rev. B 65, 184428 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.184428
122.
D. A. Garanin, Phys. A 172, 470 (1991).
http://dx.doi.org/10.1016/0378-4371(91)90395-S
123.
D. A. Garanin, Phys. Rev. B 55, 3050 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.3050
124.
U. Atxitia, P. Nieves, and O. Chubykalo-Fesenko, Phys. Rev. B 86, 104414 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104414
125.
O. Chubykalo-Fesenko, U. Nowak, R. W. Chantrell, and D. Garanin, Phys. Rev. B 74, 094436 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.094436
126.
R. F. L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R. W. Chantrell, and O. Chubykalo-Fesenko, Phys. Rev. B 85, 014433 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.014433
127.
U. Atxitia, O. Chubykalo-Fesenko, R. W. Chantrell, U. Nowak, and A. Rebei, Phys. Rev. Lett. 102, 057203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.057203
128.
C. Vogler, C. Abert, F. Bruckner, and D. Suess, Phys. Rev. B 90, 214431 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.214431
129.
B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Nat. Mater. 9, 259 (2010).
http://dx.doi.org/10.1038/nmat2593
130.
U. Atxitia and O. Chubykalo-Fesenko, Phys. Rev. B 84, 144414 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144414
131.
J. Kimling, J. Kimling, R. B. Wilson, B. Hebler, M. Albrecht, and D. G. Cahill, Phys. Rev. B 90, 224408 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.224408
132.
A. I. Lobad, R. D. Averitt, C. Kwon, and J. Taylor, Appl. Phys. Lett. 77, 4025 (2000).
http://dx.doi.org/10.1063/1.1329324
133.
T. Hickel, B. Grabowski, F. Körmann, and J. Neugebauer, J. Phys.: Condens. Matter 24, 053202 (2012).
http://dx.doi.org/10.1088/0953-8984/24/5/053202
134.
J. H. Mentink, J. Hellsvik, D. V. Afanasiev, B. A. Ivanov, A. Kirilyuk, A. V. Kimel, O. Eriksson, M. I. Katsnelson, and T. Rasing, Phys. Rev. Lett. 108, 057202 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.057202
135.
L. Xu and S. Zhang, J. Appl. Phys. 113, 163911 (2013).
http://dx.doi.org/10.1063/1.4803150
136.
C. Abert, M. Ruggeri, F. Bruckner, C. Vogler, G. Hrkac, D. Praetorius, and D. Suess, Sci. Rep. 5, 14855 (2015).
http://dx.doi.org/10.1038/srep14855
137.
M. Teichmann, B. Frietsch, K. Döbrich, R. Carley, and M. Weinelt, Phys. Rev. B 91, 014425 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.014425
138.
G. P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, and T. F. George, Nat. Phys. 5, 499 (2009).
http://dx.doi.org/10.1038/nphys1315
139.
C. Vicario, C. Ruchert, F. Ardana-Lamas, P. M. Derlet, B. Tudu, J. Luning, and C. P. Hauri, Nat. Photonics 7, 720 (2013);
http://dx.doi.org/10.1038/nphoton.2013.209
M. Shalaby, C. Vicario, and C. P. Hauri, e-print arXiv:1506.05397.
140.
J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nat. Phys. 5, 515 (2009).
http://dx.doi.org/10.1038/nphys1285
141.
A. V. Kimel, F. Bentivegna, V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, and Th. Rasing, Phys. Rev. B 63, 235201 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.235201
142.
M. Pohl, V. V. Pavlov, I. A. Akimov, V. N. Gridnev, R. V. Pisarev, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 88, 195112 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195112
143.
V. V. Kruglyak, R. J. Hicken, M. Ali, B. J. Hickey, A. T. G. Pym, and B. K. Tanner, Phys. Rev. B 71, 233104 (2005);
http://dx.doi.org/10.1103/PhysRevB.71.233104
R. Wilks and R. J. Hicken, J. Phys.: Condens. Matter 16, 4607 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/018
144.
F. Boschini, M. Mansurova, G. Mussler, J. Kampmeier, D. Grützmacher, L. Braun, F. Katmis, J. S. Moodera, C. Dallera, E. Carpene, C. Franz, M. Czerner, C. Heiliger, T. Kampfrath, and M. Münzenberg, Sci. Rep. 5, 15304 (2015).
http://dx.doi.org/10.1038/srep15304
145.
P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
http://dx.doi.org/10.1038/nphys620
146.
Atomistic calculation and image by Ulrich Nowak University of Konstanz.
147.
J. Mendil, P. Nieves, O. Chubykalo-Fesenko, J. Walowski, T. Santos, S. Pisana, and M. Münzenberg, Sci. Rep. 4, 3980 (2014).
http://dx.doi.org/10.1038/srep03980
148.
E. Turgut, C. La-o-vorakiat, J. M. Shaw, P. Grychtol, H. T. Nembach, D. Rudolf, R. Adam, M. Aeschlimann, C. M. Schneider, T. J. Silva, M. M. Murnane, H. C. Kapteyn, and S. Mathias, Phys. Rev. Lett. 110, 197201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.197201
149.
T. Roth, A. J. Schellekens, S. Alebrand, O. Schmitt, D. Steil, B. Koopmans, M. Cinchetti, and M. Aeschlimann, Phys. Rev. X 2, 021006 (2012).
http://dx.doi.org/10.1103/PhysRevX.2.021006
150.
U. Bovensiepen, Nat. Phys. 5, 461 (2009).
http://dx.doi.org/10.1038/nphys1322
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/14/10.1063/1.4958846
Loading
/content/aip/journal/jap/120/14/10.1063/1.4958846
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/14/10.1063/1.4958846
2016-08-30
2016-09-28

Abstract

This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/14/1.4958846.html;jsessionid=ULcQ4CR6rPMFSrvoztnc3lSc.x-aip-live-02?itemId=/content/aip/journal/jap/120/14/10.1063/1.4958846&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/14/10.1063/1.4958846&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/14/10.1063/1.4958846'
Right1,Right2,Right3,