Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/14/10.1063/1.4961708
1.
P. Debye, Ann. Phys. 386, 1154 (1926).
http://dx.doi.org/10.1002/andp.19263862517
2.
W. F. Giauque, J. Am. Chem. Soc. 49, 1864 (1927).
http://dx.doi.org/10.1021/ja01407a003
3.
P. J. Shirron, J. Low Temp. Phys. 148, 915 (2007).
http://dx.doi.org/10.1007/s10909-007-9441-7
4.
C. Hagemann and P. L. Richards, Cryogenics 32, 319 (1999).
5.
D. Jang, T. Gruner, A. Steppke, K. Mitsumoto, C. Geibel, and M. Brando, Nat. Commun. 6, 8680 (2015).
http://dx.doi.org/10.1038/ncomms9680
6.
B. Wolf, Y. Tsui, D. Jaiswal-Nagar, U. Tutsch, A. Honecker, K. Removic-Langer, G. Hofmann, A. Prokofiev, W. Assmus, G. Donath, and M. Lang, Proc. Natl. Acad. Sci. U.S.A. 108, 6862 (2011).
http://dx.doi.org/10.1073/pnas.1017047108
7.
L. Zhu, M. Garst, A. Rosch, and Q. Si, Phys. Rev. Lett. 91, 066404 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.066404
8.
M. Garst and A. Rosch, Phys. Rev. B 72, 205129 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205129
9.
M. Lang, B. Wolf, A. Honecker, L. Balents, U. Tutsch, P. T. Cong, G. Hofmann, N. Krüger, F. Ritter, W. Assmus, and A. Prokofiev, Phys. Status Solidi B 250, 457 (2013).
http://dx.doi.org/10.1002/pssb.201200794
10.
B. Wolf, A. Honecker, W. Hofstetter, U. Tutsch, and M. Lang, Int. J. Mod. Phys. B 28, 1430017 (2014).
http://dx.doi.org/10.1142/S0217979214300175
11.
S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.53
12.
J. Villain, Z. Phys. B: Condens. Matter 33, 31 (1979).
http://dx.doi.org/10.1007/BF01325811
13.
M. E. Zhitomirsky, Phys. Rev. B 67, 104421 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.104421
14.
S. S. Sosin, L. A. Prozorova, A. I. Smirnov, A. I. Golov, I. B. Bertukov, O. A. Petrenko, G. Balakrishnan, and M. E. Zhitomirsky, Phys. Rev. B 71, 094413 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.094413
15.
A. P. Ramirez, Annu. Rev. Mater. Sci. 24, 453 (1994).
http://dx.doi.org/10.1146/annurev.ms.24.080194.002321
16.
H. W. J. Blöte, R. F. Wielinga, and W. J. Huiskamp, Physica 43, 549 (1969).
http://dx.doi.org/10.1016/0031-8914(69)90187-6
17.
P. Dalmas de Réotier, A. Yaouanc, Y. Chapuis, S. H. Curnoe, B. Grenier, E. Ressouche, C. Marin, J. Lago, C. Baines, and S. R. Giblin, Phys. Rev. B 86, 104424 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104424
18.
J. P. C. Ruff, J. P. Clancy, A. Bourque, M. A. White, M. Ramazanoglu, J. S. Gardner, Y. Qiu, J. R. D. Copley, M. B. Johnson, H. A. Dabkowska, and B. D. Gaulin, Phys. Rev. Lett. 101, 147205 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.147205
19.
R. Coldea, D. A. Tennant, R. A. Cowley, D. F. McMorrow, B. Dorner, and Z. Tylczynski, J. Phys.: Condens. Matter 8, 7374 (1996).
20.
P. T. Cong, B. Wolf, M. de Souza, N. Krüger, A. A. Haghighirad, S. Gottlieb-Schoenmeyer, F. Ritter, W. Assmus, I. Opahle, K. Foyevtsova, H. O. Jeschke, R. Valenti, L. Wiehl, and M. Lang, Phys. Rev. B 83, 064425 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064425
21.
H. Römer, K.-D. Luther, and W. Assmus, J. Cryst. Growth 141, 159 (1994).
http://dx.doi.org/10.1016/0022-0248(94)90107-4
22.
R. Schindler, Bachelor thesis, Physikalisches Institut J. W. Goethe-Universität Frankfurt(M), 2012.
23.
V. V. Osiko, M. A. Borik, and E. E. Lomonova, Springer Handbook of Crystal Growth ( Springer, 2010).
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/14/10.1063/1.4961708
Loading
/content/aip/journal/jap/120/14/10.1063/1.4961708
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/14/10.1063/1.4961708
2016-08-31
2016-09-26

Abstract

Magnetic cooling, first introduced in the late twenties of last century, has regained considerable interest recently as a cost-efficient and easy-to-handle alternative to 3He-based refrigeration techniques. Especially, adiabatic demagnetization of paramagnets—the standard materials for magnetic refrigeration—has become indispensable for the present space applications. To match the growing demand for increasing the efficiency in these applications, a new concept for magnetic cooling based on many-body effects around a quantum-critical-point has been introduced and successfully tested [B. Wolf Proc. Natl. Acad. Sci. U.S.A. , 6862 (2011)]. By extending this concept to three-dimensional magnetic systems, we present here the magnetothermal response of the cubic pyrochlore material ErTiO in the vicinity of its -induced quantum-critical point which is located around 1.5 T. We discuss performance characteristics such as the range of operation, the efficiency, and the hold time. These figures are compared with those of state-of-the-art paramagnetic coolants and with other quantum-critical systems which differ by the dimensionality of the magnetic interactions and the degree of frustration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/14/1.4961708.html;jsessionid=XOut7yXTINBdqT37adZYGjbO.x-aip-live-06?itemId=/content/aip/journal/jap/120/14/10.1063/1.4961708&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/14/10.1063/1.4961708&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/14/10.1063/1.4961708'
Right1,Right2,Right3,