Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/14/10.1063/1.4961715
1.
K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 14791539 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R04
2.
V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
3.
D. Eriksen, K. Engelbrecht, C. R. H. Bahl, R. Bjørk, K. K. Nielsen, A. R. Insinga, and N. Pryds, Int. J. Refrig. 58, 14 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.05.004
4.
A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.104416
5.
N. Chau, N. D. The, N. Q. Hoa, C. X. Huu, N. D. Tho, and S.-C. Yu, Mater. Sci. Eng. A 449–451, 360363 (2007).
http://dx.doi.org/10.1016/j.msea.2006.02.354
6.
V. Franco, J. S. Blazquez, B. Ingale, and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012).
http://dx.doi.org/10.1146/annurev-matsci-062910-100356
7.
X. Chen, Y. Chen, Y. Tang, and D. Xiao, J. Magn. Magn. Mater. 368, 155168 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.04.020
8.
X. X. Zhang, G. H. Wen, F. W. Wang, W. H. Wang, C. H. Yu, and G. H. Wu, Appl. Phys. Lett. 77, 3072 (2000).
http://dx.doi.org/10.1063/1.1323993
9.
Q. Y. Dong, H. W. Zhang, J. Shen, J. Chen, J. R. Sun, and B. G. Shen, J. Appl. Phys. 111, 07E107 (2012).
http://dx.doi.org/10.1063/1.3671417
10.
A. Boutahar, E. K. Hlil, H. Lassri, and D. Fruchart, J. Magn. Magn. Mater. 347, 161164 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.07.040
11.
M.  E. Gruner, W. Keune, B. Roldan Cuenya, C. Weis, J. Landers, S.  I. Makarov, D. Klar, M.  Y. Hu, E.  E. Alp, J. Zhao, M. Krautz, O. Gutfleisch, and H. Wende, Phys. Rev. Lett. 114, 057202 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.057202
12.
A. Fujita, S. Koiwai, S. Fujieda, K. Fukamichi, T. Kobayashi, H. Tsuji, S. Kaji, and A. T. Saito, J. Appl. Phys. 105, 07A936 (2009).
http://dx.doi.org/10.1063/1.3070658
13.
H. Zhang, B. G. Shen, Z. Y. Xu, X. Q. Zheng, J. Shen, F. X. Hu, J. R. Sun, and Y. Long, J. Appl. Phys. 111, 07A909 (2012).
http://dx.doi.org/10.1063/1.3670608
14.
C. Wang, Y. Long, T. Ma, B. Fu, R. Ye, Y. Chang, F. Hu, and J. Shen, J. Appl. Phys. 109, 07A910 (2011).
http://dx.doi.org/10.1063/1.3549560
15.
L. G. de Medeiros, Jr. and N. A. de Oliveira, J. Alloys Compd. 424, 4145 (2006).
http://dx.doi.org/10.1016/j.jallcom.2005.12.071
16.
S. Fujieda, Y. Hasegawa, A. Fujita, and K. Fukamichi, J. Appl. Phys. 95, 2429 (2004).
http://dx.doi.org/10.1063/1.1643774
17.
D. T. Kim Anh, N. P. Thuy, N. H. Duc, T. T. Nhien, and N. V. Nong, J. Magn. Magn. Mater. 262, 427 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00073-8
18.
R. M'nassri, J. Supercond. Nov. Magn. 27(7), 17871794 (2014).
http://dx.doi.org/10.1007/s10948-014-2515-2
19.
G. J. Liu, J. R. Sun, J. Shen, B. Gao, H. W. Zhang, F. X. Hu, and B. G. Shen, Appl. Phys. Lett. 90, 032507 (2007).
http://dx.doi.org/10.1063/1.2425033
20.
D. Thi Kim Anh, V. Van Hiep, M. Kurisu, D. Van Chau, and H. Nam Nhat, Mater. Trans. 56(9), 13351338 (2015).
http://dx.doi.org/10.2320/matertrans.MA201518
21.
H. Yamada and T. Goto, Phys. Rev. B 68, 184417 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.184417
22.
A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, Phys. Rev. B 65, 014410 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.014410
23.
J. D. Zou, B. G. Shen, and J. R. Sun, J. Phys.: Condens. Matter 19, 196220 (2007).
http://dx.doi.org/10.1088/0953-8984/19/19/196220
24.
L. Jia, J. R. Sun, B. G. Shen, D. X. Li, and S. Nimori, J. Appl. Phys. 101, 106108 (2007).
http://dx.doi.org/10.1063/1.2719004
25.
L. Jia, J. R. Sun, H. W. Zhang, F. X. Hu, C. Dong, and B. G. Shen, J. Phys.: Condens. Matter 18, 999910007 (2006).
http://dx.doi.org/10.1088/0953-8984/18/44/002
26.
L. Jia, J. R. Sun, F. W. Wang, T. Y. Zhao, H. W. Zhang, B. G. Shen, D. X. Li, S. Nimori, Y. Ren, and Q. S. Zeng, Appl. Phys. Lett. 92, 101904 (2008).
http://dx.doi.org/10.1063/1.2894194
27.
S. Fujieda, A. Fujita, K. Fukamichi, Y. Yamazaki, and Y. Iijima, Appl. Phys. Lett. 79, 653 (2001).
http://dx.doi.org/10.1063/1.1388157
28.
H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).
http://dx.doi.org/10.1107/S0365110X67000234
29.
H. H. Hamdeh, H. Al-Ghanem, W. M. Hikal, S. M. Taher, J. C. Ho, D. T. K. Anh, N. P. Thuy, N. H. Duc, and P. D. Thang, J. Magn. Magn. Mater. 269, 404 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.07.004
30.
F. Song, L. Yi, W. Chaolun, Z. Min, O. Soumei, and H. Fengxia, IEEE Trans. Magn. 48, 37573759 (2012).
http://dx.doi.org/10.1109/TMAG.2012.2199964
31.
X. Hou, P. Lampen-Kelley, Y. Xue, C. Liu, H. Xu, N. Han, C. Ma, H. Srikanth, and M.-H. Phan, J. Alloys Compd. 646, 503 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.05.173
32.
N. A. de Oliveira and P. J. von Ranke, Phys. Rep. 489(4–5), 89159 (2010).
http://dx.doi.org/10.1016/j.physrep.2009.12.006
33.
P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids 4, 71 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90196-3
34.
F. C. Zumsteg and R. D. Parks, J. Phys. 32, Cl-534 (1971) (Colloque C1, suppl. 2–3).
http://dx.doi.org/10.1051/jphyscol:19711179
35.
A. L. Wysocki, K. D. Belashchenko, J. P. Velev, and M. van Schilfgaarde, J. Appl. Phys. 101, 09G506 (2007).
http://dx.doi.org/10.1063/1.2670472
36.
H. Yamada, Phys. Rev. B 47(17), 11211 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.11211
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/14/10.1063/1.4961715
Loading
/content/aip/journal/jap/120/14/10.1063/1.4961715
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/14/10.1063/1.4961715
2016-09-02
2016-09-28

Abstract

The La-excess alloys La(FeSi) (δ = 0.06 and 0.09) exhibit large magnetocaloric effect which has been attributed to the occurrence of itinerant-electron metamagnetic transition near the Curie temperature . The maximum entropy change −Δ was shown to be from 4.5 to 11.5 J/kg K for the applied field variation Δ from 20 to 70 kOe, respectively. The estimated relative cooling power for Δ = 70 kOe was 418 J/kg. The alloys show a typical NaZn-type cubic structure, featuring a doping-induced magnetovolume effect with the increase in . Under the applied pressure up to 2 GPa, the as deduced from resistance measurements decreased linearly, Δ  = 113 (for δ = 0.06) and 111 K (for δ = 0.09), together with a corresponding decrease of resistivity, Δ = 6.1 μΩ m at room temperature for both samples. At a low pressure, the effect of spontaneous magnetostriction on caused by applying the pressure appeared to have a similar magnitude to that of the negative magnetovolume effect caused by La-excess doping. In comparison with other stoichiometric La(FeSi) compounds, the pressure in our case was shown to have a smaller influence on .

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/14/1.4961715.html;jsessionid=k2kaOGiwVKhQrm2aL5lWGaK8.x-aip-live-06?itemId=/content/aip/journal/jap/120/14/10.1063/1.4961715&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/14/10.1063/1.4961715&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/14/10.1063/1.4961715'
Right1,Right2,Right3,