Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/14/10.1063/1.4961977
1.
P. Müller-Buschbaum, Polym. J. 45, 3442 (2013).
http://dx.doi.org/10.1038/pj.2012.190
2.
G. Renauda, R. Lazzari, and F. Leroy, Surf. Sci. Rep. 64, 255380 (2009).
http://dx.doi.org/10.1016/j.surfrep.2009.07.002
3.
P. Busch, D. Posselt, D. M. Smilgies, M. Rauscher, and C. M. Papadakis, Macromolecules 40, 630640 (2007).
http://dx.doi.org/10.1021/ma061695c
4.
S. V. Roth, R. Döhrmann, M. Dommach, M. Kuhlmann, I. Kröger, R. Gehrke, H. Walter, C. Schroer, B. Lengeler, and P. Müller-Buschbaum, Rev. Sci. Instrum. 77, 085106 (2006).
http://dx.doi.org/10.1063/1.2336195
5.
B. Lee, I. Park, J. Yoon, S. Park, J. Kim, K. W. Kim, T. Chang, and M. Ree, Macromolecules 38, 43114323 (2005).
http://dx.doi.org/10.1021/ma047562d
6.
P. Müller-Buschbaum, Anal. Bioanal. Chem. 376, 310 (2003).
7.
P. Busch, M. Rauscher, D. M. Smilgies, D. Posselte, and C. M. Papadakisa, J. Appl. Cryst. 39, 433442 (2006).
http://dx.doi.org/10.1107/S0021889806012337
8.
M. Rauscher, R. Paniago, H. Metzger, Z. Kovats, J. Domke, J. Peisl, H. D. Pfannes, J. Schulze, and I. Eisele, J. Appl. Phys. 86, 67636769 (1999).
http://dx.doi.org/10.1063/1.371724
9.
A. Naudon and D. Thiaudiere, J. Appl. Cryst. 30, 822827 (1997).
http://dx.doi.org/10.1107/S002188989700099X
10.
B. Lee, J. Yoon, W. Oh, Y. Hwang, K. Heo, K. S. Jin, J. Kim, K. W. Kim, and M. Ree, Macromolecules 38, 33953405 (2005).
http://dx.doi.org/10.1021/ma048214e
11.
C. Revenant, F. Leroy, R. Lazzari, G. Renaud, and C. R. Henry, Phys. Rev. B 69, 035411 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.035411
12.
R. Lazzari, F. Leroy, and G. Renaud, Phys. Rev. B 76, 125411 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125411
13.
S. Stemmer, Y. Li, B. Foran, P. S. Lysaght, S. K. Streiffer, P. Fuoss, and S. Seifert, Appl. Phys. Lett. 83, 31413143 (2003).
http://dx.doi.org/10.1063/1.1617369
14.
U. S. Jeng, C. H. Su, C. J. Su, K. F. Liao, W. T. Chuang, Y. H. Lai, J. W. Chang, Y. J. Chen, Y. S. Huang, M. T. Lee, K. L. Yu, J. M. Lin, D. G. Liu, C. F. Chang, C. Y. Liu, C. H. Chang, and K. S. Liang, J. Appl. Cryst. 43, 110121 (2010).
http://dx.doi.org/10.1107/S0021889809043271
15.
G. Kaune, M. A. Ruderer, E. Metwalli, W. Wang, S. Couet, K. Schlage, R. Röhlsberger, S. V. Roth, and P. Müller-Buschbaum, ACS Appl. Mater. Interfaces 1, 353360 (2009).
http://dx.doi.org/10.1021/am8000727
16.
M. Y. Paik, J. K. Bosworth, D. M. Smilges, E. L. Schwartz, X. Andre, and C. K. Ober, Macromolecules 43, 42534260 (2010).
http://dx.doi.org/10.1021/ma902646t
17.
N. Igarashi, N. Shimizu, A. Koyama, T. Mori, H. Ohta, Y. Niwa, H. Nitani, H. Abe, M. Nomura, T. Shioya, K. Tsuchiya, and K. Ito, J. Phys. Conf. Ser. 425, 072016 (2013).
http://dx.doi.org/10.1088/1742-6596/425/7/072016
18.
H. Takagi, N. Shimizu, N. Igarashi, T. Mori, S. Saijo, Y. Nagatani, H. Ohta, and K. Yamamoto, Polym. Prepr. Jpn. 64, 3D15 (2015).
19.
H. Okuda, K. Takeshita, S. Ochiai, S. Sakurai, and Y. Kitajima, J. Appl. Cryst. 44, 380384 (2011).
http://dx.doi.org/10.1107/S0021889811003578
20.
I. Saito, T. Miyazaki, and K. Yamamoto, Macromolecules 48, 81908196 (2015).
http://dx.doi.org/10.1021/acs.macromol.5b01883
21.
T. Yamamoto, H. Okuda, K. Takeshita, N. Usami, Y. Kitajima, and H. Ogawa, J. Synchrotron Radiat. 21, 161164 (2014).
http://dx.doi.org/10.1107/S1600577513026088
22.
J. Wernecke, H. Okuda, H. Ogawa, F. Siewert, and M. Krumrey, Macromolecules 47, 57195727 (2014).
http://dx.doi.org/10.1021/ma500642d
23.
I. Saito, D. Shimada, M. Aikawa, T. Miyazaki, K. Shimokita, H. Takagi, and K. Yamamoto, Polym. J. 48, 399406 (2016).
http://dx.doi.org/10.1038/pj.2016.2
24.
H. Okuda, T. Yamamoto, H. Takeshita, M. Hirai, and Y. Kitajima, Photon Factory Act. Rep. 31B, 2013 (2014).
25.
J. Wernecke, C. Gollwitzer, P. Müllera, and M. Krumreya, J. Synchrotron Radiat. 21, 529536 (2014).
http://dx.doi.org/10.1107/S160057751400294X
26.
Y. Yoneda, Phys. Rev. 131, 20102013 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2010
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/14/10.1063/1.4961977
Loading
/content/aip/journal/jap/120/14/10.1063/1.4961977
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/14/10.1063/1.4961977
2016-09-01
2016-09-26

Abstract

If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers and can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/14/1.4961977.html;jsessionid=bLqVsKvcFJcQmY60T2OQyAnD.x-aip-live-06?itemId=/content/aip/journal/jap/120/14/10.1063/1.4961977&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/14/10.1063/1.4961977&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/14/10.1063/1.4961977'
Right1,Right2,Right3,