Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/14/10.1063/1.4964421
1.
S. Cui, W. Feng, H. Hu, Z. Feng, and Y. Wang, “ First-principles study of zinc-blende to rocksalt phase transition in BP and BAs,” Comput. Mater. Sci. 44, 13861389 (2009).
http://dx.doi.org/10.1016/j.commatsci.2008.09.009
2.
D. Broido, L. Lindsay, and T. Reinecke, “ Ab initio study of the unusual thermal transport properties of boron arsenide and related materials,” Phys. Rev. B 88, 214303 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.214303
3.
L. Lindsay, D. Broido, and T. Reinecke, “ First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?,” Phys. Rev. Lett. 111, 025901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.025901
4.
A. Zaoui and F. E. H. Hassan, “ Full potential linearized augmented plane wave calculations of structural and electronic properties of BN, BP, BAs and BSb,” J. Phys.: Condens. Matter 13, 253 (2001).
http://dx.doi.org/10.1088/0953-8984/13/2/303
5.
J. A. Van Vechten and J. C. Phillips, “ New set of tetrahedral covalent radii,” Phys. Rev. B 2, 21602167 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.2160
6.
R. M. Wentzcovitch, M. L. Cohen, and P. K. Lam, “ Theoretical study of BN, BP, and BAs at high pressures,” Phys. Rev. B 36, 60586068 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.6058
7.
A. Boudjemline, M. M. Islam, L. Louail, and B. Diawara, “ Electronic and optical properties of BAs under pressure,” Physica B 406, 42724277 (2011).
http://dx.doi.org/10.1016/j.physb.2011.08.043
8.
S. Wang, S. F. Swingle, H. Ye, F.-R. F. Fan, A. H. Cowley, and A. J. Bard, “ Synthesis and characterization of a p-type boron arsenide photoelectrode,” J. Am. Chem. Soc. 134, 1105611059 (2012).
http://dx.doi.org/10.1021/ja301765v
9.
D. J. Stukel, “ Electronic structure and optical spectrum of boron arsenide,” Phys. Rev. B 1, 34583463 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.3458
10.
S. M. Ku, “ Preparation and properties of boron arsenides and boron arsenide-gallium arsenide mixed crystals,” J. Electrochem. Soc. 113, 813816 (1966).
http://dx.doi.org/10.1149/1.2424125
11.
R. Ahmed, S. Javad Hashemifar, H. Akbarzadeh, M. Ahmed, and A. Fazal, “ Ab initio study of structural and electronic properties of III-arsenide binary compounds,” Comput. Mater. Sci. 39, 580586 (2007).
http://dx.doi.org/10.1016/j.commatsci.2006.08.014
12.
H. Meradji, S. Drablia, S. Ghemid, H. Belkhir, B. Bouhafs, and A. Tadjer, “ First-principles elastic constants and electronic structure of BP, BAs, and BSb,” Phys. Status Solidi B 241, 28812885 (2004).
http://dx.doi.org/10.1002/pssb.200302064
13.
N. N. Anua, R. Ahmed, A. Shaari, M. A. Saeed, B. U. Haq, and S. Goumri-Said, “ Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III–V arsenides,” Semicond. Sci. Technol. 28, 105015 (2013).
http://dx.doi.org/10.1088/0268-1242/28/10/105015
14.
R. M. Wentzcovitch and M. L. Cohen, “ Theory of structural and electronic properties of BAs,” J. Phys. C: Solid State Phys. 19, 6791 (1986).
http://dx.doi.org/10.1088/0022-3719/19/34/016
15.
R. M. Wentzcovitch, M. Cardona, M. L. Cohen, and N. E. Christensen, “ X1 and X3 states of electrons and phonons in zinc blende type of semiconductors,” Solid State Commun. 67, 927930 (1988).
http://dx.doi.org/10.1016/0038-1098(88)90458-9
16.
W. E. Pickett, “ Pseudopotential methods in condensed matter applications,” Comput. Phys. Rep. 9, 115197 (1989).
http://dx.doi.org/10.1016/0167-7977(89)90002-6
17.
M. P. Surh, S. G. Louie, and M. L. Cohen, “ Quasiparticle energies for cubic BN, BP, and BAs,” Phys. Rev. B 43, 91269132 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.9126
18.
G. L. Zhao, D. Bagayoko, and T. D. Williams, “ Local-density-approximation prediction of electronic properties of GaN, Si, C, and RuO2,” Phys. Rev. B 60, 15631572 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.1563
19.
D. Bagayoko, L. Franklin, H. Jin, and G. L. Zhao, “ Comment on “Band structures and optical spectra of InN polymorphs: Influence of quasiparticle and excitonic effects”,” Phys. Rev. B 76, 037101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.037101
20.
D. Bagayoko, “ Contraction of gaussian basis sets and the total energy of fcc copper,” Int. J. Quantum Chem. 24, 527535 (1983).
http://dx.doi.org/10.1002/qua.560240857
21.
D. Bagayoko, L. Franklin, G. L. Zhao, and H. Jin, “ Erratum: “Comment on ‘Band gap bowing and electron localization of GaXIn1−XN’ [J. Appl. Phys. 100, 093717 (2006)]” [J. Appl. Phys. 103, 096101 (2008)],” J. Appl. Phys. 104(3), 039903 (2008).
http://dx.doi.org/10.1063/1.2968257
22.
D. Bagayoko and L. Franklin, “ Density-functional theory band gap of wurtzite InN,” J. Appl. Phys. 97, 123708 (2005).
http://dx.doi.org/10.1063/1.1939069
23.
E. E. Chinedu and B. Diola, “ Ab-initio electronic and structural properties of rutile titanium dioxide,” Jpn. J. Appl. Phys., Part 1 50, 101103 (2011).
http://dx.doi.org/10.7567/JJAP.50.101103
24.
D. Bagayoko, “ Understanding density functional theory (DFT) and completing it in practice,” AIP Adv. 4, 127104 (2014).
http://dx.doi.org/10.1063/1.4903408
25.
J. I. Ejembi, I. H. Nwigboji, L. Franklin, Y. Malozovsky, G. L. Zhao, and D. Bagayoko, “ Ab-initio calculations of electronic, transport, and structural properties of boron phosphide,” J. Appl. Phys. 116, 103711 (2014).
http://dx.doi.org/10.1063/1.4894692
26.
C. E. Ekuma, M. Jarrell, J. Moreno, and D. Bagayoko, “ First principle electronic, structural, elastic, and optical properties of strontium titanate,” AIP Adv. 2, 012189 (2012).
http://dx.doi.org/10.1063/1.3700433
27.
C. E. Ekuma, M. Jarrell, J. Moreno, and D. Bagayoko, “ Re-examining the electronic structure of germanium: A first-principle study,” Phys. Lett. A 377, 21722176 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.05.043
28.
L. Franklin, C. E. Ekuma, G. L. Zhao, and D. Bagayoko, “ Density functional theory description of electronic properties of wurtzite zinc oxide,” J. Phys. Chem. Solids 74, 729736 (2013).
http://dx.doi.org/10.1016/j.jpcs.2013.01.013
29.
D. Bagayoko, G. L. Zhao, J. D. Fan, and J. T. Wang, “ Ab initio calculations of the electronic structure and optical properties of ferroelectric tetragonal BaTiO3,” J. Phys.: Condens. Matter 10, 5645 (1998).
http://dx.doi.org/10.1088/0953-8984/10/25/014
30.
D. Bagayoko and G. L. Zhao, “ Predicted electronic properties of cubic Si3N4,” Physica C 364–365, 261264 (2001).
http://dx.doi.org/10.1016/S0921-4534(01)00768-7
31.
D. Bagayoko, L. Franklin, and G. L. Zhao, “ Predictions of electronic, structural, and elastic properties of cubic InN,” J. Appl. Phys. 96, 42974301 (2004).
http://dx.doi.org/10.1063/1.1790064
32.
G. L. Zhao and D. Bagayoko, “ Ab-initio density functional calculations of the growth and structural properties of short carbon nanobells,” J. Phys.: Conf. Ser. 61, 1341 (2007).
http://dx.doi.org/10.1088/1742-6596/61/1/265
33.
G. L. Zhao and D. Bagayoko, “ Electronic structure and charge transfer in 3C- and 4H-SiC,” New J. Phys. 2, 16 (2000).
http://dx.doi.org/10.1088/1367-2630/2/1/316
34.
D. M. Ceperley and B. J. Alder, “ Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett. 45, 566569 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
35.
S. H. Vosko, L. Wilk, and M. Nusair, “ Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis,” Can. J. Phys. 58, 12001211 (1980).
http://dx.doi.org/10.1139/p80-159
36.
I. H. Nwigboji, J. I. Ejembi, Y. Malozovsky, B. Khamala, L. Franklin, G.-L. Zhao, C. Ekuma, and D. Bagayoko, “ Ab-initio computation of electronic and transport properties of wurtzite aluminum nitride (w-AlN),” J. Mater. Chem. Phys. 157, 8086 (2015).
http://dx.doi.org/10.1016/j.matchemphys.2015.03.019
37.
D. R. Hartree, “ The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory methods,” Math. Proc. Cambridge Philos. Soc. 24, 89110 (1928).
http://dx.doi.org/10.1017/S0305004100011919
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/14/10.1063/1.4964421
Loading
/content/aip/journal/jap/120/14/10.1063/1.4964421
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/14/10.1063/1.4964421
2016-10-11
2016-12-08

Abstract

We present the results from , self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of boron arsenide. We utilized the local density approximation potential of Ceperley and Alder, as parameterized by Vosko and his group, the linear combination of Gaussian orbitals formalism, and the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in carrying out our completely self-consistent calculations. With this method, the results of our calculations have the full, physical content of density functional theory (DFT). Our results include electronic energy bands, densities of states, effective masses, and the bulk modulus. Our calculated, indirect band gap of 1.48 eV, from Γ to a conduction band minimum close to X, for the room temperature lattice constant of 4.777 Å, is in an excellent agreement with the experimental value of 1.46 ± 0.02 eV. We thoroughly explain the reasons for the excellent agreement between our findings and corresponding, experimental ones. This work provides a confirmation of the capability of DFT to describe accurately properties of materials, if the computations adhere strictly to the conditions of validity of DFT, as done by the BZW-EF method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/14/1.4964421.html;jsessionid=kukTn9p2STwIFM7T8QrkQcz_.x-aip-live-06?itemId=/content/aip/journal/jap/120/14/10.1063/1.4964421&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/14/10.1063/1.4964421&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/14/10.1063/1.4964421'
Right1,Right2,Right3,