Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. Yao, C. Li, Z. L. Huo, M. Liu, C. X. Zhu, C. Z. Gu, X. F. Duan, Y. G. Wang, L. Gu, and R. C. Yu, Nat. Commun. 4, 2764 (2013).
H. W. You and W. J. Cho, Appl. Phys. Lett. 96, 093506 (2010).
R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, Nat. Mater. 6, 810 (2007).
M. H. White, D. A. Adams, and J. Bu, IEEE Circuits Devices Mag. 16, 22 (2000).
J.-W. Yoon, J. H. Yoon, J.-H. Lee, and C. S. Hwang, Nanoscale 6, 6668 (2014).
R. Jiang, X. Du, Z. Han, and W. Sun, Appl. Phys. Lett. 106, 173509 (2015).
S. Yu, X. Guan, and H.-S. Philip Wong, Appl. Phys. Lett. 99, 063507 (2011).
W. Lu, J. X. Lu, X. Ou, X. J. Liu, Y. Q. Cao, A. D. Li, B. Xu, Y. D. Xia, J. Yin, and Z. G. Liu, AIP Adv. 4, 087114 (2014).
C. K. Chiang, C. H. Wu, C. C. Liu, J. F. Lin, C. L. Yang, J. Y. Wu, and S. J. Wang, Jpn. J. Appl. Phys., Part 1 51, 011101 (2012).
G. Dutta, J. Appl. Phys. 105, 106103 (2009).
G. D. Wilk and R. M. Wallace, Appl. Phys. Lett. 74, 2854 (1999).
S. Maikap, H. Y. Lee, T. Y. Wang, P. J. Tzeng, C. C. Wang, L. S. Lee, K. C. Liu, J. R. Yang, and M. J. Tsai, Semicond. Sci. Technol. 22, 884 (2007).
C. Zhu, Z. Huo, Z. Xu, M. Zhang, Q. Wang, J. Liu, S. Long, and M. Liu, Appl. Phys. Lett. 97, 253503 (2010).
S. Spiga, F. Driussi, A. Lamperti, G. Congedo, and O. Salicio, Appl. Phys. Express 5, 021102 (2012).
X. X. Lan, X. Ou, Y. Q. Cao, S. Y. Tang, C. J. Gong, B. Xu, Y. D. Xia, J. Yin, A. D. Li, F. Yan, and Z. G. Liu, J. Appl. Phys. 114, 044104 (2013).
G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).
C. C. Lin and Y. Kuo, J. Appl. Phys. 115, 084113 (2014).
K. Smits, L. Grigorjeva, W. Łojkowski, and J. D. Fidelus, Phys. Status Solidi C 4, 770 (2007).
J. N. Kim, K. S. Shin, D. H. Kim, B. O. Park, N. K. Kim, and S. H. Cho, Appl. Surf. Sci. 206, 119 (2003).
M. Matsuoka, S. Isotani, S. Miyake, Y. Setsuhara, K. Ogata, and N. Kuratani, J. Appl. Phys. 80, 1177 (1996).
H. L. Zhang, D. Z. Wang, B. Yang, and N. K. Huang, Phys. Status Solidi 160, 145 (1997).<145::AID-PSSA145>3.0.CO;2-5
D. Majumdar and D. Chatterjee, J. Appl. Phys. 70, 988 (1991).

Data & Media loading...


Article metrics loading...



In this study, ZrHfO films were fabricated on Si substrate and were annealed at different temperatures by rapid thermal annealing (RTA) process. The charge trapping memory devices based on ZrHfO/SiO/Si simple structure were investigated in detail. The memory device annealing at 690 °C shows the best property with a memory window of 5.6 V under ±12 V sweeping voltages in its capacitance-voltage curve and a better retention property. The high resolved transmission electron microscopy shows the generated SiO working as tunneling layer after RTA process, whose thickness increases with the rise of temperature. Combined with the TEM results, the photoluminescence spectrum and angle resolved photoemission spectroscopy results further verify that oxygen vacancies and inter-diffusion layer also play a crucial role in charge trapping performance. This work provides direct insights for the charge trapping mechanisms based on high-k ZrHfO films devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd