Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai, “ Design impact of positive temperature dependence on drain current in sub-1-V CMOS VLSIs,” IEEE J. Solid-State Circuits 36, 15591564 (2001).
W. M. Sansen, F. O. t. Eynde, and M. Steyaert, “ A CMOS temperature-compensated current reference,” IEEE J. Solid-State Circuits 23, 821824 (1988).
V. Reddy, A. T. Krishnan, A. Marshall, J. Rodriguez, S. Natarajan, T. Rost et al., “ Impact of negative bias temperature instability on digital circuit reliability,” Microelectron. Reliab. 45, 3138 (2005).
M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner, R. Scholz et al., “ Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique,” Int. J. Hyperthermia 21, 637647 (2005).
L. C. Branquinho, M. S. Carrião, A. S. Costa, N. Zufelato, M. H. Sousa, R. Miotto et al., “ Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia,” Sci. Rep. 3, 2887 (2013).
C. L. Dennis, K. L. Krycka, J. A. Borchers, R. D. Desautels, J. van Lierop, N. F. Huls et al., “ Internal magnetic structure of nanoparticles dominates time‐dependent relaxation processes in a magnetic field,” Adv. Funct. Mater. 25, 43004311 (2015).
D. Pan, H. Zhang, T. Fan, J. Chen, and X. Duan, “ Nearly monodispersed core–shell structural Fe3O4@ DFUR–LDH submicro particles for magnetically controlled drug delivery and release,” Chem. Commun. 47, 908910 (2011).
P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Döblinger et al., “ Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy,” J. Controlled Release 142, 108121 (2010).
D. Schmaljohann, “ Thermo-and pH-responsive polymers in drug delivery,” Adv. Drug Delivery Rev. 58, 16551670 (2006).
W. Dröge, “ Free radicals in the physiological control of cell function,” Physiol. Rev. 82, 4795 (2002).
J.-M. Yang, H. Yang, and L. Lin, “ Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells,” ACS Nano 5, 50675071 (2011).
S. Prusiner and M. Poe, “ Thermodynamic considerations of mammalian thermogenesis,” Nature 220, 235237 (1968).
H. Huang, S. Delikanli, H. Zeng, D. M. Ferkey, and A. Pralle, “ Remote control of ion channels and neurons through magnetic-field heating of nanoparticles,” Nat. Nanotechnol. 5, 602606 (2010).
J. Zhong, W. Liu, Z. Du, P. C. de Morais, Q. Xiang, and Q. Xie, “ A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles,” Nanotechnology 23, 075703 (2012).
J. Zhong, W. Liu, L. Kong, and P. C. Morais, “ A new approach for highly accurate, remote temperature probing using magnetic nanoparticles,” Sci. Rep. 4, 6338 (2014).
J. Zhong, W. Liu, L. Jiang, M. Yang, and P. C. Morais, “ Real-time magnetic nanothermometry: The use of magnetization of magnetic nanoparticles assessed under low frequency triangle-wave magnetic fields,” Rev. Sci. Instrum. 85, 094905 (2014).
J. B. Weaver, A. M. Rauwerdink, and E. W. Hansen, “ Magnetic nanoparticle temperature estimation,” Med. Phys. 36, 18221829 (2009).
A. M. Rauwerdink, E. W. Hansen, and J. B. Weaver, “ Nanoparticle temperature estimation in combined ac and dc magnetic fields,” Phys. Med. Biol. 54, L51 (2009).
M. Zhou, J. Zhong, W. Liu, Z. Du, Z. Huang, M. Yang et al., “ Study of magnetic nanoparticle spectrum for magnetic nanothermometry,” IEEE Trans. Magn. 51, 6101006 (2015).
I. Perreard, D. Reeves, X. Zhang, E. Kuehlert, E. Forauer, and J. Weaver, “ Temperature of the magnetic nanoparticle microenvironment: Estimation from relaxation times,” Phys. Med. Biol. 59, 1109 (2014).
E. Garaio, J.-M. Collantes, J. A. Garcia, F. Plazaola, and O. Sandre, “ Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe,” Appl. Phys. Lett. 107, 123103 (2015).
Y. Zhang, H. Murata, Y. Hatsukade, and S. Tanaka, “ Superparamagnetic nanoparticle detection using second harmonic of magnetization response,” Rev. Sci. Instrum. 84, 094702 (2013).
F. Ludwig, D. Eberbeck, N. Löwa, U. Steinhoff, T. Wawrzik, M. Schilling et al., “ Characterization of magnetic nanoparticle systems with respect to their magnetic particle imaging performance,” Biomed. Tech./Biomed. Eng. 58, 535545 (2013).
J. Dieckhoff, M. Schilling, and F. Ludwig, “ Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field,” Appl. Phys. Lett. 99, 112501 (2011).
B. L. Brandt, L. G. Rubin, and H. H. Sample, “ Low-temperature thermometry in high magnetic fields. VI. Industrial-grade Pt resistors above 66 K; Rh-Fe and Au-Mn resistors above 40 K,” Rev. Sci. Instrum. 59, 642 (1988).
J. Dieckhoff, D. Eberbeck, M. Schilling, and F. Ludwig, “ Magnetic-field dependence of Brownian and Néel relaxation times,” J. Appl. Phys. 119, 043903 (2016).

Data & Media loading...


Article metrics loading...



This paper investigates the influence of dc magnetic field strength on the resolution of a magnetic nanoparticle (MNP) thermometer, which employs the fundamental and 2 harmonics of the MNP magnetization induced by ac and superimposed dc magnetic fields. In ac and parallel dc magnetic fields, the strength of dc magnetic field modulates the harmonics of the MNP magnetization, which affects their temperature sensitivities and measurement signal-to-noise ratios (SNRs). A temperature-adjustable fluxgate-based magnetic particle spectrometer was used to measure the spectra of the MNP magnetization at different temperatures. To determine the temperature, the amplitudes of the measured and 2 harmonics were modeled based on the static Langevin function. AC susceptibility measurements on a MNP sample demonstrate the applicability of the static Langevin function for the description of the MNP magnetization spectra at a low frequency ac magnetic field without taking into account the MNP dynamics. Our simulations and experiments show that with increasing dc magnetic field from 0.2 mT to 2.0 mT, both the amplitude of the 2 harmonic and the temperature sensitivity of the amplitude ratio of the 2 to harmonics increase by a factor of about 10 in an ac magnetic field with a frequency of 70 Hz and an amplitude of 1 mT. Concomitantly, the SNR of the 2 harmonic significantly increases by about 20 dB. Consequently, the temperature resolution of the MNP thermometer is improved from 1.97 K to 0.26 K.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd