Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Von Dollen, S. Pimputkar, and J. S. Speck, “ Let there be light-with gallium nitride: The 2014 Nobel prize in Physics,” Angew. Chem., Int. Ed. 53, 13978 (2014).
S. Pimputkar, S. Kawabata, J. S. Speck, and S. Nakamura, “ Improved growth rates and purity of basic ammonothermal GaN,” J. Cryst. Growth 403, 717 (2014).
J. S. Speck and S. J. Rosner, “ The role of threading dislocations in the physical properties of GaN and its alloys,” Physica B 273–274, 2432 (1999).
S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “ Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition,” Appl. Phys. Lett. 70, 420 (1997).
C. Youtsey, L. T. Romano, and I. Adesida, “ Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations,” Appl. Phys. Lett. 73, 797 (1998).
C. Youtsey, L. T. Romano, R. J. Molnar, and I. Adesida, “ Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching,” Appl. Phys. Lett. 74, 3537 (1999).
J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk, T. Frauenheim, S. Oberg, and P. R. Briddon, “ Deep acceptors trapped at threading-edge dislocations in GaN,” Phys. Rev. B 58, 12571 (1998).
E. C. Kyle, S. W. Kaun, P. G. Burke, F. Wu, Y. R. Wu, and J. S. Speck, “ High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy,” J. Appl. Phys. 115, 193702 (2014).
Y. Mori, M. Imade, K. Murakami, H. Takazawa, H. Imabayashi, Y. Todoroki, K. Kitamoto, M. Maruyama, M. Yoshimura, Y. Kitaoka, and T. Sasaki, “ Growth of bulk GaN crystal by Na flux method under various conditions,” J. Cryst. Growth 350, 72 (2012).
R. T. Dwiliński, R. M. Doradziński, J. Garczyński, L. P. Sierzputowski, R. Kucharski, M. Zając, M. Rudzinski, R. Kudrawiec, W. Strupinski, and J. Misiewicz, “ Ammonothermal GaN substrates: Growth accomplishments and applications,” Phys. Status Solidi A 208, 1489 (2011).
E. R. Letts, T. Hashimoto, M. Ikari, and Y. Nojima, “ Development of GaN wafers for solid-state lighting via the ammonothermal method,” J. Cryst. Growth 350, 66 (2012).
D. Tomida, Y. Kagamitani, Q. Bao, K. Hazu, H. Sawayama, S. F. Chichibu, C. Yokoyama, T. Fukuda, and T. Ishiguro, “ Enhanced growth rate for ammonothermal gallium nitride crystal growth using ammonium iodide mineralizer,” J. Cryst. Growth 353, 59 (2012).
M. Saito, H. Yamada, K. Iso, H. Sato, H. Hirasawa, D. S. Kamber, T. Hashimoto, S. P. DenBaars, J. S. Speck, and S. Nakamura, “ Evaluation of GaN substrates grown in supercritical basic ammonia,” Appl. Phys. Lett. 94, 052109 (2009).
M. J. Callahan, B. Wang, K. D. Rakes, L. O. Bouthilette, S.-Q. Wang, D. F. Bliss, and J. W. Kolis, “ GaN single crystals grown on HVPE seeds in alkaline supercritical ammonia,” J. Cryst. Growth 287, 376 (2006).
M. Imanishi, Y. Todoroki, K. Murakami, D. Matsuo, H. Imabayashi, H. Takazawa, M. Maruyama, M. Imade, M. Yoshimura, and Y. Mori, “ Dramatic reduction of dislocations on a GaN point seed crystal by coalescence of bunched steps during Na-flux growth,” J. Cryst. Growth 427, 8793 (2015).
K. Fujito, S. Kubo, and I. Fujimura, “ Development of bulk GaN crystals and nonpolar/semipolar substrates by HVPE,” MRS Bull. 34, 313 (2009).
T. Mura, Micromechanics of Defects in Solids, 2nd ed. ( Martinus Nijhoff, 1987), p. 587.
G. G. Stoney, “ The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London, Ser. A 82, 172175 (1909).
L. B. Freund and S. Suresh, Thin Film Materials ( Cambridge University Press, 2003).
L. B. Freund, “ The stress distribution and curvature of a general compositionally graded semiconductor layer,” J. Cryst. Growth 132, 341344 (1993).
L. B. Freund, “ Some elementary connections between curvature and mismatch strain in compositionally graded thin films,” J. Mech. Phys. Solids 44, 723736 (1996).
A. Krost, A. Dadgar, G. Strassburger, and R. Clos, “ GaN-based epitaxy on silicon: Stress measurements,” Phys. Status Solidi A 200, 26 (2003).
P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “ Si doping effect on strain reduction in compressively strained Al 0.49 Ga 0.51 N thin films,” Appl. Phys. Lett. 83, 674 (2003).
A. E. Romanov and J. S. Speck, “ Stress relaxation in mismatched layers due to threading dislocation inclination,” Appl. Phys. Lett. 83, 2569 (2003).
P. Cantu, F. Wu, P. Waltereit, S. Keller, A. E. Romanov, S. P. DenBaars, and J. S. Speck, “ Role of inclined threading dislocations in stress relaxation in mismatched layers,” J. Appl. Phys. 97, 103534 (2005).
A. E. Romanov, G. E. Beltz, P. Cantu, F. Wu, S. Keller, S. P. DenBaars, and J. S. Speck, “ Cracking of III-nitride layers with strain gradients,” Appl. Phys. Lett. 89, 161922 (2006).
J. D. Acord, I. C. Manning, X. Weng, D. W. Snyder, and J. M. Redwing, “ In situ measurement of stress generation arising from dislocation inclination in AlxGa1−xN: Si thin films,” Appl. Phys. Lett. 93, 111910 (2008).
I. C. Manning, X. Weng, J. D. Acord, M. A. Fanton, D. W. Snyder, and J. M. Redwing, “ Tensile stress generation and dislocation reduction in Si-doped Alx Ga1−xN films,” J. Appl. Phys. 106, 023506 (2009).
P. Fewster, X-Ray Scattering From Semiconductors ( Imperial College Press, 2000).
H. Y. Lin, Y. F. Chen, T. Y. Lin, C. F. Shih, K. S. Liu, and N. C. Chen, “ Direct evidence of compositional pulling effect in AlxGa1-xN epilayers,” J. Cryst. Growth 290, 225 (2006).
R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, “ Excellent crystallinity of truly bulk ammonothermal GaN,” J. Cryst. Growth 310, 39113916 (2008).
D. M. Follstaedt, S. R. Lee, P. P. Provencio, A. A. Allerman, J. A. Floro, and M. H. Crawford, “ Relaxation of compressively-strained AlGaN by inclined threading dislocations,” Appl. Phys. Lett. 87, 121112 (2005).
D. M. Follstaedt, S. R. Lee, A. A. Allerman, and J. A. Floro, “ Strain relaxation in AlGaN multilayer structures by inclined dislocations,” J. Appl. Phys. 105, 083507 (2009).
Y. N. Picard, M. E. Twigg, J. D. Caldwell, C. R. Eddy, Jr., M. A. Mastro, and R. T. Holm, “ Resolving the Burgers vector for individual GaN dislocations by electron channeling contrast imaging,” Scr. Mater. 61, 773776 (2009).
S. D. Carnevale, J. I. Deitz, J. A. Carlin, Y. N. Picard, D. W. McComb, M. De Graef, S. A. Ringel, and T. J. Grassman, “ Applications of electron channeling contrast imaging for the rapid characterization of extended defects in III–V/Si heterostructures,” IEEE J. Photovoltaics 5(2), 676 (2015).

Data & Media loading...


Article metrics loading...



We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substrates as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd