Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/6/10.1063/1.4960701
1.
K. Barmak, A. Darbal, K. J. Ganesh, P. J. Ferreira, T. Sun, B. Yao, A. P. Warren, K. R. Coffey, and J. M. Rickman, J. Vac. Sci. Technol., A 32, 061503 (2014).
http://dx.doi.org/10.1116/1.4894453
2.
T. Sun, B. Yao, A. Warren, V. Kumar, S. Roberts, K. Barmak, and K. R. Coffey, J. Vac. Sci. Technol., A 26, 605 (2008).
http://dx.doi.org/10.1116/1.2938395
3.
T. Sun, B. Yao, A. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 79, 041402(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.041402
4.
T. Sun, Bo. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 81, 155454 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155454
5.
J. J. Thomson, Proc. Cambridge Philos. Soc. 11, 120 (1901).
6.
F. Chen and D. Gardner, IEEE Electron Device Lett. 19, 508 (1998).
http://dx.doi.org/10.1109/55.735762
7.
W. Steinhögl, G. Schinlder, G. Steinlesberger, and M. Engelhardt, Phys. Rev. B 66, 075414 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.075414
8.
S. H. Brongersma, K. Vanstreels, W. Wu, W. Zhang, D. Ernur, J. D'Haen, V. Terzieva, M. Van Hove, T. Clarysse, L. Carbonell, W. Vandervorst, W. De Ceuninck, and K. Maex, in IEEE Int. Interconnect Technol. Conf. (2004), p. 48.
9.
W. Zhang, S. H. Brongersma, T. Clarysse, V. Terzieva, E. Rosseel, W. Vandervorst, and K. Maex, J. Vac. Sci. Technol., B 22, 1830 (2004).
http://dx.doi.org/10.1116/1.1771666
10.
S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B 22, 240 (2004).
http://dx.doi.org/10.1116/1.1642639
11.
L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).
http://dx.doi.org/10.1126/science.1092905
12.
W. Steinhögl, G. Schinlder, G. Steinlesberger, M. Traving, and M. Engelhardt, J. Appl. Phys. 97, 023706 (2005).
http://dx.doi.org/10.1063/1.1834982
13.
J. J. Plombon, E. Andideh, V. M. Dubin, and J. Maiz, Appl. Phys. Lett. 89, 113124 (2006).
http://dx.doi.org/10.1063/1.2355435
14.
W. Zhang, S. H. Brongersma, Z. Li, D. Li, O. Richard, and K. Maex, J. Appl. Phys. 101, 063703 (2007).
http://dx.doi.org/10.1063/1.2711385
15.
X. H. Chen, L. Lu, and K. Lu, J. Appl. Phys. 102, 083708 (2007).
http://dx.doi.org/10.1063/1.2799087
16.
K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).
http://dx.doi.org/10.1126/science.1159610
17.
O. Anderoglu, A. Misra, F. Ronning, H. Wang, and X. Zhang, J. Appl. Phys. 106, 024313 (2009).
http://dx.doi.org/10.1063/1.3176483
18.
D. Josell, S. H. Brongersma, and Z. Tőkei, Annu. Rev. Mater. Res. 39, 231 (2009).
http://dx.doi.org/10.1146/annurev-matsci-082908-145415
19.
R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, and S. Peddeti, Appl. Phys. Lett. 96, 042116 (2010).
http://dx.doi.org/10.1063/1.3292022
20.
K. Barmak, T. Sun, and K. R. Coffey, AIP Conf. Proc. 1300, 1222 (2010).
http://dx.doi.org/10.1063/1.3527118
21.
K. Fuchs, Math. Proc. Cambridge Philos. Soc. 34, 100 (1938);
http://dx.doi.org/10.1017/S0305004100019952
E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
http://dx.doi.org/10.1080/00018735200101151
22.
A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).
http://dx.doi.org/10.1103/PhysRevB.1.1382
23.
S. Ranganathan, Acta Crystallogr. 21, 197 (1966).
http://dx.doi.org/10.1107/S0365110X66002615
24.
A. D. Darbal, K. J. Ganesh, X. Liu, S.-B. Lee, J. Ledonne, T. Sun, B. Yao, A. P. Warren, G. S. Rohrer, A. D. Rollett, P. J. Ferreira, K. R. Coffey, and K. Barmak, Microsc. Microanal. 19, 111 (2013).
http://dx.doi.org/10.1017/S1431927612014055
25.
B. Yao, R. V. Petrova, R. R. Vanfleet, and K. R. Coffey, J. Electron Microsc. 57, 47 (2006).
26.
X. Liu, N. T. Nuhfer, A. P. Warren, M. F. Toney, K. R. Coffey, G. S. Rohrer, and K. Barmak, J. Mater. Res. 30, 528537 (2015).
http://dx.doi.org/10.1557/jmr.2014.393
27.
B. Yao, T. Sun, A. Warren, H. Heinrich, K. Barmak, and K. R. Coffey, Micron 41, 177182 (2010).
http://dx.doi.org/10.1016/j.micron.2009.11.008
28.
See http://rsb.info.nih.gov/ij/ for downloading ImageJ which is an image processing and analysis software available from the National Institutes of Health.
29.
D. T. Carpenter, J. M. Rickman, and K. Barmak, J. Appl. Phys. 84, 58435854 (1998).
http://dx.doi.org/10.1063/1.368898
30.
B. Feldman, S. Park, M. Haverty, S. Shankar, and S. T. Dunham, Phys. Status Solidi 247, 1791 (2010).
http://dx.doi.org/10.1002/pssb.201046133
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/6/10.1063/1.4960701
Loading
/content/aip/journal/jap/120/6/10.1063/1.4960701
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/6/10.1063/1.4960701
2016-08-10
2016-12-03

Abstract

Crystal orientation mapping in the transmission electron microscope was used to quantify the twin boundary length fraction per unit area for five Ta SiN/SiO encapsulated Cu films with thicknesses in the range of 26–111 nm. The length fraction was found to be higher for a given twin-excluded grain size for these films compared with previously investigated SiO and Ta/SiO encapsulated films. The quantification of the twin length fraction per unit area allowed the contribution of the twin boundaries to the size effect resistivity to be assessed. It is shown that the increased resistivity of the Ta SiN encapsulated Cu films compared with the SiO and Ta/SiO encapsulated films is not a result of increased surface scattering, but it is a result of the increase in the density of twin boundaries. With twin boundaries included in the determination of grain size as a mean-intercept length, the resistivity data are well described by 2-parameter Matthiessen's rule summation of the Fuchs-Sondheimer and Mayadas Shatzkes models, with and parameters that are within experimental error equal to those in prior reports and are 0.48(+0.33/−0.31) and = 0.27 ± 0.03.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/6/1.4960701.html;jsessionid=fL3xlpvxM54ZbQzsyZSd237a.x-aip-live-06?itemId=/content/aip/journal/jap/120/6/10.1063/1.4960701&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/6/10.1063/1.4960701&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/6/10.1063/1.4960701'
Right1,Right2,Right3,