Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Barmak, A. Darbal, K. J. Ganesh, P. J. Ferreira, T. Sun, B. Yao, A. P. Warren, K. R. Coffey, and J. M. Rickman, J. Vac. Sci. Technol., A 32, 061503 (2014).
T. Sun, B. Yao, A. Warren, V. Kumar, S. Roberts, K. Barmak, and K. R. Coffey, J. Vac. Sci. Technol., A 26, 605 (2008).
T. Sun, B. Yao, A. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 79, 041402(R) (2009).
T. Sun, Bo. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale, and K. R. Coffey, Phys. Rev. B 81, 155454 (2010).
J. J. Thomson, Proc. Cambridge Philos. Soc. 11, 120 (1901).
F. Chen and D. Gardner, IEEE Electron Device Lett. 19, 508 (1998).
W. Steinhögl, G. Schinlder, G. Steinlesberger, and M. Engelhardt, Phys. Rev. B 66, 075414 (2002).
S. H. Brongersma, K. Vanstreels, W. Wu, W. Zhang, D. Ernur, J. D'Haen, V. Terzieva, M. Van Hove, T. Clarysse, L. Carbonell, W. Vandervorst, W. De Ceuninck, and K. Maex, in IEEE Int. Interconnect Technol. Conf. (2004), p. 48.
W. Zhang, S. H. Brongersma, T. Clarysse, V. Terzieva, E. Rosseel, W. Vandervorst, and K. Maex, J. Vac. Sci. Technol., B 22, 1830 (2004).
S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B 22, 240 (2004).
L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Science 304, 422 (2004).
W. Steinhögl, G. Schinlder, G. Steinlesberger, M. Traving, and M. Engelhardt, J. Appl. Phys. 97, 023706 (2005).
J. J. Plombon, E. Andideh, V. M. Dubin, and J. Maiz, Appl. Phys. Lett. 89, 113124 (2006).
W. Zhang, S. H. Brongersma, Z. Li, D. Li, O. Richard, and K. Maex, J. Appl. Phys. 101, 063703 (2007).
X. H. Chen, L. Lu, and K. Lu, J. Appl. Phys. 102, 083708 (2007).
K. Lu, L. Lu, and S. Suresh, Science 324, 349 (2009).
O. Anderoglu, A. Misra, F. Ronning, H. Wang, and X. Zhang, J. Appl. Phys. 106, 024313 (2009).
D. Josell, S. H. Brongersma, and Z. Tőkei, Annu. Rev. Mater. Res. 39, 231 (2009).
R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, and S. Peddeti, Appl. Phys. Lett. 96, 042116 (2010).
K. Barmak, T. Sun, and K. R. Coffey, AIP Conf. Proc. 1300, 1222 (2010).
K. Fuchs, Math. Proc. Cambridge Philos. Soc. 34, 100 (1938);
E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1, 1382 (1970).
S. Ranganathan, Acta Crystallogr. 21, 197 (1966).
A. D. Darbal, K. J. Ganesh, X. Liu, S.-B. Lee, J. Ledonne, T. Sun, B. Yao, A. P. Warren, G. S. Rohrer, A. D. Rollett, P. J. Ferreira, K. R. Coffey, and K. Barmak, Microsc. Microanal. 19, 111 (2013).
B. Yao, R. V. Petrova, R. R. Vanfleet, and K. R. Coffey, J. Electron Microsc. 57, 47 (2006).
X. Liu, N. T. Nuhfer, A. P. Warren, M. F. Toney, K. R. Coffey, G. S. Rohrer, and K. Barmak, J. Mater. Res. 30, 528537 (2015).
B. Yao, T. Sun, A. Warren, H. Heinrich, K. Barmak, and K. R. Coffey, Micron 41, 177182 (2010).
See for downloading ImageJ which is an image processing and analysis software available from the National Institutes of Health.
D. T. Carpenter, J. M. Rickman, and K. Barmak, J. Appl. Phys. 84, 58435854 (1998).
B. Feldman, S. Park, M. Haverty, S. Shankar, and S. T. Dunham, Phys. Status Solidi 247, 1791 (2010).

Data & Media loading...


Article metrics loading...



Crystal orientation mapping in the transmission electron microscope was used to quantify the twin boundary length fraction per unit area for five Ta SiN/SiO encapsulated Cu films with thicknesses in the range of 26–111 nm. The length fraction was found to be higher for a given twin-excluded grain size for these films compared with previously investigated SiO and Ta/SiO encapsulated films. The quantification of the twin length fraction per unit area allowed the contribution of the twin boundaries to the size effect resistivity to be assessed. It is shown that the increased resistivity of the Ta SiN encapsulated Cu films compared with the SiO and Ta/SiO encapsulated films is not a result of increased surface scattering, but it is a result of the increase in the density of twin boundaries. With twin boundaries included in the determination of grain size as a mean-intercept length, the resistivity data are well described by 2-parameter Matthiessen's rule summation of the Fuchs-Sondheimer and Mayadas Shatzkes models, with and parameters that are within experimental error equal to those in prior reports and are 0.48(+0.33/−0.31) and = 0.27 ± 0.03.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd