Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961523
1.
B. Jaffe, “ Piezoelectric ceramics,” Non-Metallic Solids ( Elsevier Science, 2012).
2.
E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, Nat. Photonics 5, 39 (2011).
http://dx.doi.org/10.1038/nphoton.2010.285
3.
B. Wechsler, D. Rytz, M. Klein, and R. Schwartz, “ Defect properties and the photorefractive effect in barium titanate,” in Materials for Nonlinear Optics: Chemical Perspectives, edited by S. Marder, J. Sohn, and G. Stucky ( ACS, 1991), Chap. 26, pp. 394409.
4.
J. F. Scott and C. A. P. de Araujo, Science 246, 1400 (1989).
http://dx.doi.org/10.1126/science.246.4936.1400
5.
M. Schröder, A. Haußmann, A. Thiessen, E. Sörgel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22, 3936 (2012).
http://dx.doi.org/10.1002/adfm.201201174
6.
P. W. Forsbergh, Phys. Rev. 76, 1187 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1187
7.
G. Arlt and P. Sasko, J. Appl. Phys. 51, 4956 (1980).
http://dx.doi.org/10.1063/1.328372
8.
B. Zalar, V. V. Laguta, and R. Blinc, Phys. Rev. Lett. 90, 037601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.037601
9.
W. J. Merz, Phys. Rev. 76, 1221 (1949).
http://dx.doi.org/10.1103/PhysRev.76.1221
10.
A. L. Gruverman, J. Hatano, and H. Tokumoto, Jpn. J. Appl. Phys., Part 1 36, 2207 (1997).
http://dx.doi.org/10.1143/JJAP.36.2207
11.
L. M. Eng, H.-J. Güntherodt, G. A. Schneider, U. Köpke, and J. Muñoz Saldaña, Appl. Phys. Lett. 74, 233 (1999).
http://dx.doi.org/10.1063/1.123266
12.
S. C. Schneider, S. Grafström, and L. M. Eng, Phys. Rev. B 71, 115418 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115418
13.
S. C. Kehr, M. Cebula, O. Mieth, T. Härtling, J. Seidel, S. Grafström, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, Phys. Rev. Lett. 100, 256403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.256403
14.
J. Döring, H.-G. von Ribbeck, M. Fehrenbacher, S. C. Kehr, and L. M. Eng, Appl. Phys. Lett. 105, 053109 (2014).
http://dx.doi.org/10.1063/1.4892364
15.
S. V. Kalinin and D. A. Bonnell, J. Appl. Phys. 87, 3950 (2000).
http://dx.doi.org/10.1063/1.372440
16.
P. Milde, U. Zerweck, L. M. Eng, M. Abel, L. Giovanelli, L. Nony, M. Mossoyan, L. Porte, and C. Loppacher, Nanotechnology 19, 305501 (2008).
http://dx.doi.org/10.1088/0957-4484/19/30/305501
17.
T. Otto, S. Grafström, H. Chaib, and L. M. Eng, Appl. Phys. Lett. 84, 1168 (2004).
http://dx.doi.org/10.1063/1.1647705
18.
N. V. Andreeva, M. Tyunina, A. V. Filimonov, A. I. Rudskoy, N. A. Pertsev, and S. B. Vakhrushev, Appl. Phys. Lett. 104, 112905 (2014).
http://dx.doi.org/10.1063/1.4869147
19.
T. Limböck and E. Sörgel, Appl. Phys. Lett. 105, 152901 (2014).
http://dx.doi.org/10.1063/1.4897361
20.
U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Phys. Rev. B 71, 125424 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.125424
21.
P. Marton, I. Rychetsky, and J. Hlinka, Phys. Rev. B 81, 144125 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.144125
22.
M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials ( Oxford Classics, Oxford University Press, 2001), Chap. 4.
23.
J. Muñoz-Saldaña, G. Schneider, and L. Eng, Surf. Sci. 480, L402 (2001).
http://dx.doi.org/10.1016/S0039-6028(01)00992-X
24.
S. Jesse, B. J. Rodriguez, S. Choudhury, A. P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E. A. Eliseev, A. N. Morozovska, J. Zhang, L.-Q. Chen, and S. V. Kalinin, Nat. Mater. 7, 209 (2008).
http://dx.doi.org/10.1038/nmat2114
25.
R. Miller and G. Weinreich, Phys. Rev. 117, 1460 (1960).
http://dx.doi.org/10.1103/PhysRev.117.1460
26.
Y.-H. Shin, I. Grinberg, I.-W. Chen, and A. Rappe, Nature 449, 881 (2007).
http://dx.doi.org/10.1038/nature06165
27.
Y. C. Shu and K. Bhattacharya, Philos. Mag. B 81, 2021 (2001).
http://dx.doi.org/10.1080/13642810108208556
28.
S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 63, 125411 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.125411
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961523
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961523
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961523
2016-08-30
2016-09-28

Abstract

Piezoresponse force microscopy (PFM) is a well-established method to study ferroelectric domains on the nanometer length scale. Here, we apply low-temperature PFM and Kelvin probe force microscopy (KPFM) to investigate the domain configuration of (111)-oriented barium titanate in the temperature range from 150 K to 290 K. We are able to identify all three ferroelectric phases and domain orientations from the combined PFM, KPFM, and topographic data. Ferroelectric phase transitions manifest in changes of the piezoelectric tensor elements as well as in variations of the spatial domain arrangement. A complete reordering of domains occurs exclusively upon the rhombohedral-to-orthorhombic phase transition during heating.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961523.html;jsessionid=AsLLPtDvi7XzjlySJpb2uaLn.x-aip-live-03?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961523&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961523&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961523'
Right1,Right2,Right3,