Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961562
1.
H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express 1, 041201 (2008).
http://dx.doi.org/10.1143/APEX.1.041201
2.
S. Schorr, G. Wagner, M. Tovar, and D. Sheptyakov, in Structure and Microstructure of Zn2x(CuBIII)1-xX2 Semiconductors (BIII = Ga,In; X = S,Se,Te) ( Mater. Res. Soc. Symp. Proc., 2007), Vol. 1012, p. Y03.
3.
O. V. Parasyuk, I. D. Olekseyuk, and L. V. Piskach, J. Alloys Compd. 397, 169 (2005).
http://dx.doi.org/10.1016/j.jallcom.2005.01.032
4.
H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth 208, 416 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00468-6
5.
S. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 94, 041903 (2009).
http://dx.doi.org/10.1063/1.3074499
6.
O. M. Madelung, Semiconductors: Data Handbook, 3rd ed. ( Springer, New York, 2004).
7.
O. V. Parasyuk, L. D. Gulay, Y. E. Romanyuk, and L. V. Piskach, J. Alloys Compd. 329, 202 (2001).
http://dx.doi.org/10.1016/S0925-8388(01)01606-1
8.
T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 3, 34 (2013).
http://dx.doi.org/10.1002/aenm.201200348
9.
D. Barkhouse, O. Gunawan, T. Gokmen, T. Todorov, and D. Mitzi, Prog. Photovoltaics 20, 6 (2012).
http://dx.doi.org/10.1002/pip.1160
10.
J. J. Scragg, P. J. Dale, and L. M. Peter, Electrochem. Commun. 10, 639 (2008).
http://dx.doi.org/10.1016/j.elecom.2008.02.008
11.
M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, and E. Mellikov, Phys. Status Solidi A 205, 167 (2008).
http://dx.doi.org/10.1002/pssa.200776839
12.
S. Siebentritt, Thin Solid Films 535, 1 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.12.089
13.
L. Yu and A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.068701
14.
W. J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).
http://dx.doi.org/10.1002/adma.201306281
15.
I. H. Lee, J. Lee, Y. J. Oh, S. Kim, and K. J. Chang, Phys. Rev. B 90, 115209 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.115209
16.
W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
17.
T. Jäger, Y. E. Romanyuk, B. Bissig, F. Pianezzi, S. Nishiwaki, P. Reinhard, J. Steinhauser, J. Schwenk, and A. N. Tiwari, J. Appl. Phys. 117, 225303 (2015).
http://dx.doi.org/10.1063/1.4922351
18.
S. Schorr, Sol. Energy Mater. Sol. Cells 95, 1482 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.002
19.
I. D. Olekseyuk, L. D. Gulay, I. V. Dydchak, L. V. Piskach, O. V. Parasyuk, and O. V. Marchuk, J. Alloys Compd. 340, 141 (2002).
http://dx.doi.org/10.1016/S0925-8388(02)00006-3
20.
M. L. Liu, I. W. Chen, F. Q. Huang, and L. D. Chen, Adv. Mater. 21, 3808 (2009).
http://dx.doi.org/10.1002/adma.200900409
21.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
22.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
23.
G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
24.
G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
http://dx.doi.org/10.1088/0953-8984/6/40/015
25.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
26.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
27.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
28.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
29.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
30.
C. S. Wang and W. E. Pickett, Phys. Rev. Lett. 51, 597 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.597
31.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
32.
M. Gajdos, K. Hummer, G. Kresse, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045112
33.
S. Körbel, D. Kammerlander, R. Sarmiento-Pérez, C. Attaccalite, M. A. L. Marques, and S. Botti, Phys. Rev. B 91, 075134 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.075134
34.
K. A. Johnson and N. W. Ashcroft, Phys. Rev. B 58, 15548 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15548
35.
T. M. Henderson, J. Paier, and G. E. Scuseria, Phys. Status Solidi B 248, 767 (2011).
http://dx.doi.org/10.1002/pssb.201046303
36.
F. L. Tang, Z. X. Zhu, H. T. Xue, W. J. Lu, Y. D. Feng, Z. M. Wang, and Y. Wang, Physica B 407, 4814 (2012).
http://dx.doi.org/10.1016/j.physb.2012.09.015
37.
F. C. Wan, F. L. Tang, Z. X. Zhu, H. T. Xue, W. J. Lu, Y. D. Feng, and Z. Y. Rui, Mater. Sci. Semicond. Process. 16, 1422 (2013).
http://dx.doi.org/10.1016/j.mssp.2013.05.009
38.
M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion ( Springer, New York, 2003).
39.
See http://rredc.nrel.gov/solar/spectra/am1.5/ for “Reference Solar Spectral Irradiance: Air Mass 1.5” (last accessed February 08, 2013).
40.
T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, IEEE Trans. Electron Devices 31, 711 (1984).
http://dx.doi.org/10.1109/T-ED.1984.21594
41.
D. Chen and N. M. Ravindra, J. Alloys Compd. 579, 468 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.048
42.
P. U. Bhaskar, G. S. Babu, Y. B. K. Kumar, and V. S. Raja, Thin Solid Films 534, 249 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.03.001
43.
J. Paier, R. Asahi, A. Nagoya, and G. Kresse, Phys. Rev. B 79, 115126 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115126
44.
H. Zhao and C. Persson, Thin Solid Films 519, 7508 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.12.217
45.
H. Shen, X. D. Jiang, S. Wang, Y. Fu, C. Zhou, and L. S. Li, J. Mater. Chem. 22, 25050 (2012).
http://dx.doi.org/10.1039/c2jm35598a
46.
M. L. Liu, F. Q. Huang, L. D. Chen, and I. Chen, Appl. Phys. Lett. 94, 202103 (2009).
http://dx.doi.org/10.1063/1.3130718
47.
J. L. Jambor and A. C. Roberts, Am. Mineral. 84, 1464 (1999).
48.
L. V. Piskach, O. V. Parasyuk, and Y. E. Romanyuk, J. Alloys Compd. 299, 227 (2000).
http://dx.doi.org/10.1016/S0925-8388(99)00797-5
49.
W. Schäfer and R. Nitsche, Z. Kristallogr. 145, 356 (1977).
50.
H. Guan, J. Zhao, X. Wang, and F. Yu, Chalcogenide Lett. 10, 367 (2013).
51.
H. Hahn and H. Schulze, Naturwissenschaften 52, 426 (1965).
52.
M. Ibánez, D. Cadavid, R. Zamani, N. G. Castelló, V. I. Roca, W. Li, A. Fairbrother, J. D. Prades, A. Shavel, J. Arbiol, A. P. Rodríguez, J. R. Morante, and A. Cabot, Chem. Mater. 24, 562 (2012).
http://dx.doi.org/10.1021/cm2031812
53.
H. Haeuseler, F. W. Ohrendorf, and M. Himmrich, Z. Naturforsch. B 46, 1049 (1991).
http://dx.doi.org/10.1515/znb-1991-0813
54.
W. Schäfer and R. Nitsche, Mater. Res. Bull. 9, 645 (1974).
http://dx.doi.org/10.1016/0025-5408(74)90135-4
55.
Y. K. Kabalov, T. L. Evstigneeva, and E. M. Spiridonov, Crystallography reports 43, 16 (1998).
56.
S. A. Mkrtchyan, K. O. Dovletov, E. G. Zhukov, A. G. Melikdzhanyan, and S. Nuriev, Neorg. Mater. 24, 1094 (1988).
57.
D. Li, X. Zhang, Z. Zhu, H. Zhang, and F. Ling, Solid State Sci. 14, 890 (2012).
http://dx.doi.org/10.1016/j.solidstatesciences.2012.04.004
58.
M. Bercx, N. Sarmadian, R. Saniz, B. Partoens, and D. Lamoen, Phys. Chem. Chem. Phys. 18, 2054220549 (2016).
http://dx.doi.org/10.1039/C6CP03468C
59.
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).
http://dx.doi.org/10.1002/aenm.201301465
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961562
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961562
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961562
2016-08-30
2016-09-26

Abstract

Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured cell efficiency. Using first-principles calculations based on density functional theory, the optoelectronic properties of a group of Cu-based chalcogenides Cu-II-IV-VI is studied. They are then screened with the aim of identifying potential absorber materials for photovoltaic applications. The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev. Lett. , 068701 (2012)] is used as a metric for the screening. After constructing the current-voltage curve, the SLME is calculated from the maximum power output. The role of the nature of the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum theoretical power conversion efficiency is studied. Our results show that CuII-GeSe with II = Cd and Hg, and Cu-II-SnS with II = Cd, Hg, and Zn have a higher theoretical efficiency compared with the materials currently used as absorber layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961562.html;jsessionid=hnhAI_YB5iBUM00Xjh4WNRuo.x-aip-live-06?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961562&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961562&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961562'
Right1,Right2,Right3,