Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961607
1.
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, M. Daughton, S. von Molna, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
2.
J. Versluijs, M. Bari, and J. Coey, Phys. Rev. Lett. 87, 026601 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.026601
3.
J. Zlatanova and S. H. Leuba, Biochem. Cell Biol. 81, 151 (2003).
http://dx.doi.org/10.1139/o03-048
4.
S. Jain, J. Appl. Phys. 95, 7237 (2004).
http://dx.doi.org/10.1063/1.1651800
5.
A. Fernández-Pacheco, J. M. De Teresa, J. Orna, L. Morellon, P. A. Algarabel, J. A. Pardo, M. R. Ibarra, C. Magen, and E. Snoeck, Phys. Rev. B 78, 212402 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.212402
6.
I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
7.
L. W. Finger, R. M. Hazen, and A. M. Hofmeister, Phys. Chem. Miner. 13, 215 (1986).
http://dx.doi.org/10.1007/BF00308271
8.
R. J. Harrison and A. Putnis, Am. Miner. 81, 375 (1996).
http://dx.doi.org/10.2138/am-1996-3-412
9.
S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh, and T. Venkatesan, Phys. Rev. B 57, 7823 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.7823
10.
D. M. Phase, S. Tiwari, R. Prakash, A. Dubey, V. G. Sathe, and R. J. Choudhary, J. Appl. Phys. 100, 123703 (2006).
http://dx.doi.org/10.1063/1.2403849
11.
S. Tiwari, R. Prakash, R. J. Choudhary, and D. M. Phase, J. Phys. D: Appl. Phys. 40, 4943 (2007).
http://dx.doi.org/10.1088/0022-3727/40/16/028
12.
R. Master, S. Tiwari, R. J. Choudhary, U. P. Deshpande, T. Shripathi, and D. M. Phase, J. Appl. Phys. 109, 043502 (2011).
http://dx.doi.org/10.1063/1.3549237
13.
E. J. W. Verwey, Nature 144, 327 (1939).
http://dx.doi.org/10.1038/144327b0
14.
X. Liu, H. Lu, and M. He, J. Phys. D: Appl. Phys. 47, 105004 (2014).
http://dx.doi.org/10.1088/0022-3727/47/10/105004
15.
J. A. Moyer, S. Lee, P. Schiffer, and L. W. Martin, Phys. Rev. B 91, 64413 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.064413
16.
J.-A. Kim, S.-K. Lee, and S.-G. Yoon, Sens. Actuators, B 204, 622 (2014).
http://dx.doi.org/10.1016/j.snb.2014.08.005
17.
M. L. Paramês, J. Mariano, Z. Viskadourakis, N. Popovici, M. S. Rogalski, J. Giapintzakis, and O. Conde, Appl. Surf. Sci. 252, 4610 (2006).
http://dx.doi.org/10.1016/j.apsusc.2005.07.090
18.
X. W. Li, A. Gupta, G. Xiao, and G. Q. Gong, J. Appl. Phys. 83, 7049 (1998).
http://dx.doi.org/10.1063/1.367547
19.
J. Yun, Y. Lee, W. Lee, C. Kim, and S. Yoon, J. Mater. Chem. C 1, 1977 (2013).
http://dx.doi.org/10.1039/c2tc00672c
20.
A. R. Lennie, N. G. Condon, F. M. Leibsle, P. W. Murray, G. Thornton, and D. J. Vaughan, Phys. Rev. B 53, 10244 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.10244
21.
W. Weiss and M. Ritter, Phys. Rev. B 59, 5201 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5201
22.
G. D. Waddill and O. Ozturk, Surf. Sci. 575, 35 (2005).
http://dx.doi.org/10.1016/j.susc.2004.10.050
23.
M. Xue, S. Wang, K. Wu, J. Guo, and Q. Guo, Langmuir 27, 11 (2011).
http://dx.doi.org/10.1021/la103732r
24.
C. Schlueter, M. Lübbe, A. M. Gigler, and W. Moritz, Surf. Sci. 605, 1986 (2011).
http://dx.doi.org/10.1016/j.susc.2011.07.019
25.
S. Kaya, H. Ogasawara, and A. Nilsson, Catal. Today 240, 184 (2015).
http://dx.doi.org/10.1016/j.cattod.2014.07.025
26.
F. C. Voogt, T. Fujii, P. J. M. Smulders, L. Niesen, M. A. James, and T. Hibma, Phys. Rev. B 60, 11193 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.11193
27.
T. Nagahama, Y. Matsuda, K. Tate, T. Kawai, N. Takahashi, S. Hiratani, Y. Watanabe, T. Yanase, and T. Shimada, Appl. Phys. Lett. 105, 102410 (2014).
http://dx.doi.org/10.1063/1.4894575
28.
C. H. Lanier, A. N. Chiaramonti, L. D. Marks, and K. R. Poeppelmeier, Surf. Sci. 603, 2574 (2009).
http://dx.doi.org/10.1016/j.susc.2009.06.006
29.
F. Bertram, C. Deiter, K. Pflaum, M. Suendorf, C. Otte, and J. Wollschläger, J. Appl. Phys. 110, 102208 (2011).
http://dx.doi.org/10.1063/1.3661655
30.
F. Genuzio, A. Sala, T. Schmidt, D. Menzel, and H.-J. Freund, J. Phys. Chem. C 118, 29068 (2014).
http://dx.doi.org/10.1021/jp504020a
31.
C. Pecharromán, T. González-Carreño, and J. E. Iglesias, Phys. Chem. Miner. 22, 21 (1995).
http://dx.doi.org/10.1007/BF00202677
32.
L. W. Finger and R. M. Hazen, J. Appl. Phys. 51, 5362 (1980).
http://dx.doi.org/10.1063/1.327451
33.
J. Lewis, D. Schwarzenbach, and H. D. Flack, Acta Crystallogr., Sect. A 38, 733 (1982).
http://dx.doi.org/10.1107/S0567739482001478
34.
R. Grau-Crespo, A. Y. Al-Baitai, I. Saadoune, and N. H. De Leeuw, J. Phys.: Condens. Matter 22, 255401 (2010).
http://dx.doi.org/10.1088/0953-8984/22/25/255401
35.
X. L. Huang, Y. Yang, and J. Ding, Acta Mater. 61, 548 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.003
36.
R. A. Robie and B. S. Hemingway, “ Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures,” R. A. Robie and B. S. Hemingway, U.S. Geological Survey Bulletin 1259 (1968), p. 17.
37.
G. Ketteler, W. Weiss, W. Ranke, and R. Schlögl, Phys. Chem. Chem. Phys. 3, 1114 (2001).
http://dx.doi.org/10.1039/b009288f
38.
T. L. Cottrell, The Strengths of Chemical Bonds ( Butterworths, London, 1958).
39.
S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, J. Semicond. 32, 013001 (2011).
http://dx.doi.org/10.1088/1674-4926/32/1/013001
40.
M. F. Al-Kuhaili, M. Saleem, and S. M. A. Durrani, J. Alloys Compd. 521, 178 (2012).
http://dx.doi.org/10.1016/j.jallcom.2012.01.115
41.
C. H. Bamford, C. F. H. Tipper, and R. G. Compton, Comprehensive Chemical Kinetics ( Elsevier Pub. Co., Amsterdam, New York, 1969).
42.
S. W. Benson, J. Chem. Educ. 42, 502 (1965).
http://dx.doi.org/10.1021/ed042p502
43.
H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis (Elsevier, Distributors for the U.S. and Canada, Elsevier Science Pub. Co., Amsterdam, The Netherlands, New York, NY, USA, 1989).
44.
H. Iida, T. Koizumi, Y. Uesu, K. Kohn, N. Ikeda, S. Mori, R. Haumont, P.-E. Janolin, J.-M. Kiat, M. Fukunaga, and Y. Noda, J. Phys. Soc. Jpn. 81, 024719 (2012).
http://dx.doi.org/10.1143/JPSJ.81.024719
45.
D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Phys. Rev. Lett. 79, 5162 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.5162
46.
W. Eerenstein, T. T. M. Palstra, T. Hibma, and S. Celotto, Phys. Rev. B 66, 201101 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.201101
47.
X. H. Liu, A. D. Rata, C. F. Chang, A. C. Komarek, and L. H. Tjeng, Phys. Rev. B 90, 125142 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125142
48.
B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials ( IEEE/Wiley, Hoboken, NJ, 2009).
49.
R. Dronskowski, Adv. Funt. Mater. 11, 27 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<27::AID-ADFM27>3.0.CO;2-X
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961607
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961607
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961607
2016-08-30
2016-09-27

Abstract

We have studied the kinetics of the transitions between the FeO and FeO phases as thin epilayers (∼2.5 nm) on AlO (001) substrates using time-resolved reflection high energy electron diffraction. The different iron oxide phases were identified using a combination of and characterizations. The transition from an α-FeO (001) epilayer to a FeO (111) epilayer through thermal reduction was found to be determined by the Fe-O bonding energy, resulting in a long time scale. The oxidation at high temperature converts a FeO (111) epilayer to an α-FeO (001) epilayer quickly; at low temperature, a γ-FeO (111) epilayer was slowly generated instead. By repeating the deposition/thermal reduction processes, a thicker FeO (111) film was obtained, which exhibit high crystallinity and moderate magnetic coercivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961607.html;jsessionid=OTE5LluyuGIdGx7NxfGAhlDe.x-aip-live-02?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961607&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961607&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961607'
Right1,Right2,Right3,