Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. J. Flewitt, in Handbook of Visual Display Technology, edited by J. Chen, W. M. Cranton, and M. Fihn ( Springer, 2012), Vol. 1, p. 628.
E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
C. Candelise, M. Winskel, and R. Gross, Prog. Photovoltaics: Res. Appl. 20, 816 (2012).
T. Minami, Jpn. J. Appl. Phys., Part 1 33, 1693 (1994).
K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, F. Uratani, and T. Yotsuya, Jpn. J. Appl. Phys., Part 2 44, L34 (2005).
D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, J. Appl. Phys. 92, 310 (2002).
J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Prarilla, B. To, D. W. Readey, and D. S. Ginley, Thin Solid Films 411, 152 (2002).
Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, and K. Tominaga, Vacuum 74, 607 (2004).
D. L. Young, D. L. Williamson, and T. J. Coutts, J. Appl. Phys. 91, 1464 (2002).
R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys. 83, 2631 (1998).
M. Morales-Masis, F. Dauzou, Q. Jeangros, A. Dabirian, H. Lifka, R. Gierth, M. Ruske, D. Moet, A. Hessler-Wyser, and C. Ballif, Adv. Funct. Mater. 26, 384 (2016).
S. Dutta and A. Dodabalapur, Sens. Actuators, B 143, 50 (2009).
Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
X. Wu, S. Asher, D. H. Levi, D. E. King, Y. Yan, T. A. Gessert, and P. Sheldon, J. Appl. Phys. 89, 4564 (2001).
C. H. Kim, Y. S. Rim, and H. J. Kim, J. Phys. D: Appl. Phys. 47, 385104 (2014).
R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).
E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).
H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86, 013503 (2005).
P. Görrn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp, Appl. Phys. Lett. 90, 063502 (2007).
P. Görrn, F. Ghaffari, T. Riedl, and W. Kowalsky, Solid-State Electron. 53, 329 (2009).
C.-G. Lee, B. Cobb, and A. Dodabalapur, Appl. Phys. Lett. 97, 203505 (2010).
S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, J. Phys. D: Appl. Phys. 42, 035106 (2009).
W.-S. Choi, J. Korean Phys. Soc. 57, 1472 (2010).
J. Heo, S. Bok Kim, and R. G. Gordon, Appl. Phys. Lett. 101, 113507 (2012).
U. K. Kim, S. H. Rha, J. H. Kim, Y. J. Chung, J. Jung, E. S. Hwang, J. Lee, T. J. Park, J.-H. Choi, and C. S. Hwang, J. Mater. Chem. C 1, 6695 (2013).
M. K. Jayaraj, K. J. Saji, K. Nomura, T. Kamiya, and H. Hosono, J. Vac. Sci. Technol. B 26, 495 (2008).
D. Hong, H. Q. Chiang, and J. F. Wager, J. Vac. Sci. Technol. B 24, L23 (2006).
R. L. Hoffman, Solid-State Electron. 50, 784 (2006).
J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films 494, 42 (2006).
M. G. McDowell, R. J. Sanderson, and I. G. Hill, Appl. Phys. Lett. 92, 013502 (2008).
S. J. Wakeham, M. J. Thwaites, B. W. Holton, C. Tsakonas, W. M. Cranton, D. C. Koutsogeorgis, and R. Ranson, Thin Solid Films 518, 1355 (2009).
K. Tominaga, Y. Sueyoshi, H. Imai, M. Chong, and Y. Shintani, Jpn. J. Appl. Phys., Part 1 32, 4745 (1993).
F. M. Li, B. C. Bayer, S. Hofmann, J. D. Dutson, S. J. Wakeham, M. J. Thwaites, W. I. Milne, and A. J. Flewitt, Appl. Phys. Lett. 98, 252903 (2011).
A. J. Flewitt, J. D. Dutson, P. Beecher, D. Paul, S. J. Wakeham, M. E. Vickers, C. Ducati, S. P. Speakman, W. I. Milne, and M. J. Thwaites, Semicond. Sci. Technol. 24, 085002 (2009).
H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).
J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
U. Özguür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, Chem. Commun. 46, 1529 (2010).
G. Sanon, R. Rup, and A. Mansingh, Phys. Rev. B 44, 5672 (1991).
B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).
E. Burstein, Phys. Rev. 93, 632 (1954).
T. S. Moss, Proc. Phys. Soc. (London) B 67, 775 (1954).
K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, K. Moriwaki, and T. Yotsuya, Thin Solid Films 516, 5814 (2008).
P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010).
S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005).
K. Tominaga, T. Ueda, T. Ao, M. Kataoka, and I. Mori, Thin Solid Films 281, 194 (1996).
H.-N. Cui, V. Teixeira, L.-J. Meng, R. Martins, and E. Fortunato, Vacuum 82, 1507 (2008).
S. Li, X. Qiao, and J. Chen, Mater. Chem. Phys. 98, 144 (2006).
H.-M. Kim, S.-K. Jung, J.-S. Ahn, Y.-J. Kang, and K.-C. Je, Jpn. J. Appl. Phys. 42, 223 (2003).
L. García-Gancedo, J. Pedrós, Z. Zhu, A. J. Flewitt, W. I. Milne, J. K. Luo, and C. J. B. Ford, J. Appl. Phys. 112, 014907 (2012).
P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).
J. S. Rajachidambaram, S. Sanghavi, P. Nachimuthu, V. Shutthanandan, T. Varga, B. Flynn, S. Thevuthasan, and G. S. Herman, J. Mater. Res. 27, 2309 (2012).
R. Kelly and D. E. Harrison, Mater. Sci. Eng. 69, 449 (1985).
See for calculations of the sputtering yields of elemental solids bombarded by ions such as Argon at various energies, using semi-empirical equation.
D. F. Anthrop and A. W. Searcy, J. Phys. Chem. 68, 2335 (1964).
J. Kanicki and S. Martin, in Thin-Film Transistors, edited by C. R. Kagan and P. Andry ( Marcel Dekker Inc., New York, 2003), p. 71.
N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.-F. Lin, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 104, 102103 (2014).
T. Kamiya and H. Hosono, NPG Asia Mater. 2, 15 (2010).
J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mo, and H. D. Kim, Appl. Phys. Lett. 91, 113505 (2007).
J. Robertson, J. Non-Cryst. Solids 358, 2437 (2012).
K. M. Niang, J. Cho, A. Sadhanala, W. I. Milne, R. H. Friend, and A. J. Flewitt, “ Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: effect of tin composition and annealing temperatures,” Phys. Status Solidi A (submitted).
P. T. Erslev, E. S. Sundholm, R. E. Presley, D. Hong, J. F. Wager, and J. D. Cohen, Appl. Phys. Lett. 95, 192115 (2009).

Data & Media loading...


Article metrics loading...



The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ∼90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108, a sub-threshold slope of 0.55 V dec−1, and a field effect mobility of 15 cm2 V−1 s−1, which is a sharp increase from 0.8 cm2 V−1 s−1 obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V−1 s−1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec−1. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common ZnSnO and ZnSnO phases.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd