Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961608
1.
A. J. Flewitt, in Handbook of Visual Display Technology, edited by J. Chen, W. M. Cranton, and M. Fihn ( Springer, 2012), Vol. 1, p. 628.
2.
E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).
http://dx.doi.org/10.1002/adma.201103228
3.
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).
http://dx.doi.org/10.1126/science.1083212
4.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
5.
C. Candelise, M. Winskel, and R. Gross, Prog. Photovoltaics: Res. Appl. 20, 816 (2012).
http://dx.doi.org/10.1002/pip.2216
6.
T. Minami, Jpn. J. Appl. Phys., Part 1 33, 1693 (1994).
http://dx.doi.org/10.1143/JJAP.33.L1693
7.
K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, F. Uratani, and T. Yotsuya, Jpn. J. Appl. Phys., Part 2 44, L34 (2005).
http://dx.doi.org/10.1143/JJAP.44.L34
8.
D. L. Young, H. Moutinho, Y. Yan, and T. J. Coutts, J. Appl. Phys. 92, 310 (2002).
http://dx.doi.org/10.1063/1.1483104
9.
J. D. Perkins, J. A. del Cueto, J. L. Alleman, C. Warmsingh, B. M. Keyes, L. M. Gedvilas, P. A. Prarilla, B. To, D. W. Readey, and D. S. Ginley, Thin Solid Films 411, 152 (2002).
http://dx.doi.org/10.1016/S0040-6090(02)00205-5
10.
Y. Hayashi, K. Kondo, K. Murai, T. Moriga, I. Nakabayashi, H. Fukumoto, and K. Tominaga, Vacuum 74, 607 (2004).
http://dx.doi.org/10.1016/j.vacuum.2004.01.033
11.
D. L. Young, D. L. Williamson, and T. J. Coutts, J. Appl. Phys. 91, 1464 (2002).
http://dx.doi.org/10.1063/1.1429793
12.
R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, J. Appl. Phys. 83, 2631 (1998).
http://dx.doi.org/10.1063/1.367025
13.
M. Morales-Masis, F. Dauzou, Q. Jeangros, A. Dabirian, H. Lifka, R. Gierth, M. Ruske, D. Moet, A. Hessler-Wyser, and C. Ballif, Adv. Funct. Mater. 26, 384 (2016).
http://dx.doi.org/10.1002/adfm.201503753
14.
S. Dutta and A. Dodabalapur, Sens. Actuators, B 143, 50 (2009).
http://dx.doi.org/10.1016/j.snb.2009.07.056
15.
Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, Energy Environ. Sci. 6, 2112 (2013).
http://dx.doi.org/10.1039/c3ee24461j
16.
X. Wu, S. Asher, D. H. Levi, D. E. King, Y. Yan, T. A. Gessert, and P. Sheldon, J. Appl. Phys. 89, 4564 (2001).
http://dx.doi.org/10.1063/1.1351539
17.
C. H. Kim, Y. S. Rim, and H. J. Kim, J. Phys. D: Appl. Phys. 47, 385104 (2014).
http://dx.doi.org/10.1088/0022-3727/47/38/385104
18.
R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys. Lett. 82, 733 (2003).
http://dx.doi.org/10.1063/1.1542677
19.
E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, Appl. Phys. Lett. 85, 2541 (2004).
http://dx.doi.org/10.1063/1.1790587
20.
H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86, 013503 (2005).
http://dx.doi.org/10.1063/1.1843286
21.
P. Görrn, P. Hölzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp, Appl. Phys. Lett. 90, 063502 (2007).
http://dx.doi.org/10.1063/1.2458457
22.
P. Görrn, F. Ghaffari, T. Riedl, and W. Kowalsky, Solid-State Electron. 53, 329 (2009).
http://dx.doi.org/10.1016/j.sse.2009.01.006
23.
C.-G. Lee, B. Cobb, and A. Dodabalapur, Appl. Phys. Lett. 97, 203505 (2010).
http://dx.doi.org/10.1063/1.3517502
24.
S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, J. Phys. D: Appl. Phys. 42, 035106 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/035106
25.
W.-S. Choi, J. Korean Phys. Soc. 57, 1472 (2010).
http://dx.doi.org/10.3938/jkps.57.1472
26.
J. Heo, S. Bok Kim, and R. G. Gordon, Appl. Phys. Lett. 101, 113507 (2012).
http://dx.doi.org/10.1063/1.4752727
27.
U. K. Kim, S. H. Rha, J. H. Kim, Y. J. Chung, J. Jung, E. S. Hwang, J. Lee, T. J. Park, J.-H. Choi, and C. S. Hwang, J. Mater. Chem. C 1, 6695 (2013).
http://dx.doi.org/10.1039/c3tc31323a
28.
M. K. Jayaraj, K. J. Saji, K. Nomura, T. Kamiya, and H. Hosono, J. Vac. Sci. Technol. B 26, 495 (2008).
http://dx.doi.org/10.1116/1.2839860
29.
D. Hong, H. Q. Chiang, and J. F. Wager, J. Vac. Sci. Technol. B 24, L23 (2006).
http://dx.doi.org/10.1116/1.2345206
30.
R. L. Hoffman, Solid-State Electron. 50, 784 (2006).
http://dx.doi.org/10.1016/j.sse.2006.03.004
31.
J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, J. H. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, Thin Solid Films 494, 42 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.07.195
32.
M. G. McDowell, R. J. Sanderson, and I. G. Hill, Appl. Phys. Lett. 92, 013502 (2008).
http://dx.doi.org/10.1063/1.2828862
33.
S. J. Wakeham, M. J. Thwaites, B. W. Holton, C. Tsakonas, W. M. Cranton, D. C. Koutsogeorgis, and R. Ranson, Thin Solid Films 518, 1355 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.04.072
34.
K. Tominaga, Y. Sueyoshi, H. Imai, M. Chong, and Y. Shintani, Jpn. J. Appl. Phys., Part 1 32, 4745 (1993).
http://dx.doi.org/10.1143/JJAP.32.4745
35.
F. M. Li, B. C. Bayer, S. Hofmann, J. D. Dutson, S. J. Wakeham, M. J. Thwaites, W. I. Milne, and A. J. Flewitt, Appl. Phys. Lett. 98, 252903 (2011).
http://dx.doi.org/10.1063/1.3601487
36.
A. J. Flewitt, J. D. Dutson, P. Beecher, D. Paul, S. J. Wakeham, M. E. Vickers, C. Ducati, S. P. Speakman, W. I. Milne, and M. J. Thwaites, Semicond. Sci. Technol. 24, 085002 (2009).
http://dx.doi.org/10.1088/0268-1242/24/8/085002
37.
H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.073
38.
J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).
http://dx.doi.org/10.1002/pssb.19660150224
39.
U. Özguür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
40.
M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, Chem. Commun. 46, 1529 (2010).
http://dx.doi.org/10.1039/b921010e
41.
G. Sanon, R. Rup, and A. Mansingh, Phys. Rev. B 44, 5672 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5672
42.
B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).
http://dx.doi.org/10.1063/1.357383
43.
E. Burstein, Phys. Rev. 93, 632 (1954).
http://dx.doi.org/10.1103/PhysRev.93.632
44.
T. S. Moss, Proc. Phys. Soc. (London) B 67, 775 (1954).
http://dx.doi.org/10.1088/0370-1301/67/10/306
45.
K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, K. Moriwaki, and T. Yotsuya, Thin Solid Films 516, 5814 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.10.055
46.
P. Banerjee, W.-J. Lee, K.-R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010).
http://dx.doi.org/10.1063/1.3466987
47.
S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005).
http://dx.doi.org/10.1063/1.1940137
48.
K. Tominaga, T. Ueda, T. Ao, M. Kataoka, and I. Mori, Thin Solid Films 281, 194 (1996).
http://dx.doi.org/10.1016/0040-6090(96)08611-7
49.
H.-N. Cui, V. Teixeira, L.-J. Meng, R. Martins, and E. Fortunato, Vacuum 82, 1507 (2008).
http://dx.doi.org/10.1016/j.vacuum.2008.03.061
50.
S. Li, X. Qiao, and J. Chen, Mater. Chem. Phys. 98, 144 (2006).
http://dx.doi.org/10.1016/j.matchemphys.2005.09.012
51.
H.-M. Kim, S.-K. Jung, J.-S. Ahn, Y.-J. Kang, and K.-C. Je, Jpn. J. Appl. Phys. 42, 223 (2003).
http://dx.doi.org/10.1143/JJAP.42.223
52.
L. García-Gancedo, J. Pedrós, Z. Zhu, A. J. Flewitt, W. I. Milne, J. K. Luo, and C. J. B. Ford, J. Appl. Phys. 112, 014907 (2012).
http://dx.doi.org/10.1063/1.4736541
53.
P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Appl. Phys. Lett. 82, 1117 (2003).
http://dx.doi.org/10.1063/1.1553997
54.
J. S. Rajachidambaram, S. Sanghavi, P. Nachimuthu, V. Shutthanandan, T. Varga, B. Flynn, S. Thevuthasan, and G. S. Herman, J. Mater. Res. 27, 2309 (2012).
http://dx.doi.org/10.1557/jmr.2012.170
55.
R. Kelly and D. E. Harrison, Mater. Sci. Eng. 69, 449 (1985).
http://dx.doi.org/10.1016/0025-5416(85)90346-5
56.
See http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values for calculations of the sputtering yields of elemental solids bombarded by ions such as Argon at various energies, using semi-empirical equation.
57.
D. F. Anthrop and A. W. Searcy, J. Phys. Chem. 68, 2335 (1964).
http://dx.doi.org/10.1021/j100790a052
58.
J. Kanicki and S. Martin, in Thin-Film Transistors, edited by C. R. Kagan and P. Andry ( Marcel Dekker Inc., New York, 2003), p. 71.
59.
N. Mitoma, S. Aikawa, X. Gao, T. Kizu, M. Shimizu, M.-F. Lin, T. Nabatame, and K. Tsukagoshi, Appl. Phys. Lett. 104, 102103 (2014).
http://dx.doi.org/10.1063/1.4868303
60.
T. Kamiya and H. Hosono, NPG Asia Mater. 2, 15 (2010).
http://dx.doi.org/10.1038/asiamat.2010.5
61.
J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mo, and H. D. Kim, Appl. Phys. Lett. 91, 113505 (2007).
http://dx.doi.org/10.1063/1.2783961
62.
J. Robertson, J. Non-Cryst. Solids 358, 2437 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2011.12.012
63.
K. M. Niang, J. Cho, A. Sadhanala, W. I. Milne, R. H. Friend, and A. J. Flewitt, “ Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: effect of tin composition and annealing temperatures,” Phys. Status Solidi A (submitted).
64.
P. T. Erslev, E. S. Sundholm, R. E. Presley, D. Hong, J. F. Wager, and J. D. Cohen, Appl. Phys. Lett. 95, 192115 (2009).
http://dx.doi.org/10.1063/1.3262962
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961608
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961608
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961608
2016-08-29
2016-12-03

Abstract

The influence of the stoichiometry of amorphous zinc tin oxide (a-ZTO) thin films used as the semiconducting channel in thin film transistors (TFTs) is investigated. A-ZTO has been deposited using remote-plasma reactive sputtering from zinc:tin metal alloy targets with 10%, 33%, and 50% Sn at. %. Optimisations of thin films are performed by varying the oxygen flow, which is used as the reactive gas. The structural, optical, and electrical properties are investigated for the optimised films, which, after a post-deposition annealing at 500 °C in air, are also incorporated as the channel layer in TFTs. The optical band gap of a-ZTO films slightly increases from 3.5 to 3.8 eV with increasing tin content, with an average transmission ∼90% in the visible range. The surface roughness and crystallographic properties of the films are very similar before and after annealing. An a-ZTO TFT produced from the 10% Sn target shows a threshold voltage of 8 V, a switching ratio of 108, a sub-threshold slope of 0.55 V dec−1, and a field effect mobility of 15 cm2 V−1 s−1, which is a sharp increase from 0.8 cm2 V−1 s−1 obtained in a reference ZnO TFT. For TFTs produced from the 33% Sn target, the mobility is further increased to 21 cm2 V−1 s−1, but the sub-threshold slope is slightly deteriorated to 0.65 V dec−1. For TFTs produced from the 50% Sn target, the devices can no longer be switched off (i.e., there is no channel depletion). The effect of tin content on the TFT electrical performance is explained in the light of preferential sputtering encountered in reactive sputtering, which resulted in films sputtered from 10% and 33% Sn to be stoichiometrically close to the common ZnSnO and ZnSnO phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961608.html;jsessionid=-4xVQ3D26jP4r78-31h95Aj7.x-aip-live-03?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961608&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961608&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961608'
Right1,Right2,Right3,