Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961871
1.
J. A. Cooper, Jr. and A. Agarwal, Proc. IEEE 90, 956 (2002).
http://dx.doi.org/10.1109/JPROC.2002.1021561
2.
V. V. Afanas'ev, F. Ciobanu, S. Dimitrijev, G. Pensl, and A. Stesmans, J. Phys.: Condens. Matter 16, S1839 (2004).
http://dx.doi.org/10.1088/0953-8984/16/17/019
3.
R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).
http://dx.doi.org/10.1063/1.4891166
4.
S. Dhar, L. C. Feldman, S. Wang, T. Isaacs-Smith, and J. R. Williams, J. Appl. Phys. 98, 014902 (2005).
http://dx.doi.org/10.1063/1.1938270
5.
G. Y. Chun, C. C. Tin, J. R. Williams, K. McDonalds, M. DiVentra, S. T. Pantelides, L. C. Feldman, and R. A. Weller, Appl. Phys. Lett. 76, 1713 (2000).
http://dx.doi.org/10.1063/1.126167
6.
K. Fukuda, M. Kato, K. Kojima, and J. Senzaki, Appl. Phys. Lett. 84, 2088 (2004).
http://dx.doi.org/10.1063/1.1682680
7.
H. Hirai and K. Kita, in Proceedings of the Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (2015), p. 952.
8.
D. Okamoto, H. Yano, T. Hatayama, and T. Fuyuki, Appl. Phys. Lett. 96, 203508 (2010).
http://dx.doi.org/10.1063/1.3432404
9.
T. Hosoi, S. Azumo, Y. Kashiwagi, S. Hosaka, R. Nakamura, S. Mitani, Y. Nakano, H. Asahara, T. Nakamura, T. Kimoto, T. Shimura, and H. Watanabe, IEEE Int. Electron Devices Meet. 2012, 159162.
http://dx.doi.org/10.1109/IEDM.2012.6478998
10.
F. Devynck, A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. B 83, 195319 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195319
11.
N. Bhat and K. C. Saraswat, J. Appl. Phys. 84, 27222726 (1998).
http://dx.doi.org/10.1063/1.368384
12.
V. V. Afanas'ev, M. Bassler, G. Pensl, and M. Schulz, Phys. Status Solidi A 162, 321 (1997).
http://dx.doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F
13.
A. J. Lelis, R. Green, D. B. Habersat, and M. El, IEEE Trans. Electron Devices 62, 316 (2015).
http://dx.doi.org/10.1109/TED.2014.2356172
14.
M. Sometani, D. Okamoto, S. Harada, H. Ishimori, S. Takasu, T. Hatakeyama, M. Takei, Y. Yonezawa, K. Fukuda, and H. Okumura, Mater. Sci. Forum 821–823, 685 (2015).
http://dx.doi.org/10.4028/www.scientific.net/MSF.821-823.685
15.
M. Sometani, D. Okamoto, S. Harada, H. Ishimori, S. Takasu, T. Hatakeyama, M. Takei, Y. Yonezawa, K. Fukuda, and H. Okumura, Jpn. J. Appl. Phys., Part 1 55, 04ER11 (2016).
http://dx.doi.org/10.7567/JJAP.55.04ER11
16.
Y. Song and F. W. Smith, Appl. Phys. Lett. 81, 3061 (2002).
http://dx.doi.org/10.1063/1.1514397
17.
Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, IEEE Trans. Electron Devices 59(8), 2100 (2012).
http://dx.doi.org/10.1109/TED.2012.2197000
18.
H.-P. Chen, Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, and P. M. Asbeck, IEEE Trans. Electron Devices 59(9), 2383 (2012).
http://dx.doi.org/10.1109/TED.2012.2205255
19.
D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. ( Wiley-Interscience, New York, 1998), p. 276.
20.
K. Tanaka, R. Zhang, M. Takenaka, and S. Takagi, Jpn. J. Appl. Phys., Part 1 54, 04DA02 (2015).
http://dx.doi.org/10.7567/JJAP.54.04DA02
21.
D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, J. Appl. Phys. 73, 5058 (1993).
http://dx.doi.org/10.1063/1.353777
22.
A. J. Lelis, D. Habersat, R. Green, A. Ogunniyi, M. Gurfinkel, J. Suehle, and N. Goldsman, IEEE Trans. Electron Devices 55, 1835 (2008).
http://dx.doi.org/10.1109/TED.2008.926672
23.
A. K. Jonscher, J. Phys. D 32, R57 (1999).
http://dx.doi.org/10.1088/0022-3727/32/14/201
24.
E. Simoen, D. H.-C. Lin, A. Alian, G. Brammertz, C. Merckling, J. Mitard, and C. Claeys, IEEE Trans. Device Mater. Reliab. 13, 444 (2013).
http://dx.doi.org/10.1109/TDMR.2013.2275917
25.
F. P. Heiman and G. Warfield, IEEE Trans. Electron. Devices 12, 167 (1965).
http://dx.doi.org/10.1109/T-ED.1965.15475
26.
D. König, M. Rennau, and M. Henker, Solid-State Electron. 51, 650654 (2007).
http://dx.doi.org/10.1016/j.sse.2007.03.009
27.
A. J. Lelis, D. B. Habersat, R. Green, and N. Goldsman, Mater. Sci. Forum 717–720, 465 (2012).
http://dx.doi.org/10.4028/www.scientific.net/MSF.717-720.465
28.
T. E. Rudenko, I. N. Osiyuk, I. P. Tyagulski, H. Ö. Ólafsson, and E. Ö. Sveinbjörnsson, Solid-State Electron. 49, 545553 (2005).
http://dx.doi.org/10.1016/j.sse.2004.12.006
29.
N. Yoshida, E. Waki, M. Arai, K. Yamasaki, J.-H. Han, M. Takenaka, and S. Takagi, Thin Solid Films 557, 237240 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.062
30.
H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 112, 024520 (2012).
http://dx.doi.org/10.1063/1.4740068
31.
W. Li, J. Zhao, and D. Wang, Solid State Commun. 205, 28 (2015).
http://dx.doi.org/10.1016/j.ssc.2014.12.020
32.
T. Hosoi, T. Kirino, S. Mitani, Y. Nakano, T. Nakamura, T. Shimura, and H. Watanabe, Curr. Appl. Phys. 12, S79 (2012).
http://dx.doi.org/10.1016/j.cap.2012.04.008
33.
C. J. Cochrane, P. M. Lenahan, and A. J. Lelis, J. Appl. Phys. 109, 014506 (2011).
http://dx.doi.org/10.1063/1.3530600
34.
H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. 111, 014502 (2012).
http://dx.doi.org/10.1063/1.3673572
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961871
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961871
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961871
2016-08-31
2016-09-27

Abstract

A method for estimating near-interface oxide trap density in silicon carbide metal-oxide-semiconductor (MOS) capacitors by transient capacitance measurements was investigated. The fitting of the transient capacitance characteristics measured at room and low temperatures to a simple model describing the de-trapping process enables us to characterize the responses of the traps at various distances from the interface. The distribution of the trap locations in the oxide and that of response times were taken into account in this fitting. This method was applied to MOS-capacitor samples to show the significant reduction in interface state density by tuning the thermal oxidation conditions. It was found that the density of the oxide traps, especially in the spatially shallow region within several angstroms from the interface, is sensitive to thermal oxide growth conditions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961871.html;jsessionid=zUo5HlnnZbedDFoQ9X4OBwB9.x-aip-live-03?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961871&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961871&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961871'
Right1,Right2,Right3,