Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/8/10.1063/1.4961931
1.
T. Kikkawa, M. Kanamura, T. Ohki, K. Imanishi, K. Watanabe, and K. Joshin, ECS Trans. 50, 323 (2013).
http://dx.doi.org/10.1149/05003.0323ecst
2.
T. Ueda, in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA) (IEEE, 2014), pp. 20752078.
3.
Y. Narukawa, M. Ichikawa, D. Sanga, M. Sano, and T. Mukai, J. Phys. D: Appl. Phys. 43, 354002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/35/354002
4.
N. Nepal, S. M. Bedair, N. A. El-Masry, D. S. Lee, A. J. Steckl, and J. M. Zavada, Appl. Phys. Lett. 91, 222503 (2007).
http://dx.doi.org/10.1063/1.2817741
5.
A. J. Steckl, J. C. Heikenfeld, M. J. Garter, C. C. Baker, and R. Jones, IEEE J. Sel. Top. Quantum Electron. 8, 749 (2002).
http://dx.doi.org/10.1109/JSTQE.2002.801690
6.
A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Express 2, 071004 (2009).
http://dx.doi.org/10.1143/APEX.2.071004
7.
P. N. Favennec, H. L'Haridon, M. Salvi, D. Moutonnet, and Y. Le Guillou, Electron. Lett. 25, 718 (1989).
http://dx.doi.org/10.1049/el:19890486
8.
N. Nepal, J. M. Zavada, D. S. Lee, and A. J. Steckl, Appl. Phys. Lett. 93, 061110 (2008).
http://dx.doi.org/10.1063/1.2970993
9.
J. B. Gruber, B. Zandi, H. J. Lozykowski, and W. M. Jadwisienczak, J. Appl. Phys. 92, 5127 (2002).
http://dx.doi.org/10.1063/1.1511294
10.
U. Hommerich, E. Nyein, and D. Lee, Appl. Phys. Lett. 83, 4556 (2003).
http://dx.doi.org/10.1063/1.1631742
11.
D. S. Lee and A. J. Steckl, Appl. Phys. Lett. 83, 2094 (2003).
http://dx.doi.org/10.1063/1.1611275
12.
K. Lorenz, S. M. C. Miranda, E. Alves, I. S. Roqan, K. P. O'Donnell, and M. Bokowski, Proc. SPIE 2012, 82620C82620C–6.
http://dx.doi.org/10.1117/12.906810
13.
I. S. Roqan, K. P. O'Donnell, R. W. Martin, P. R. Edwards, S. F. Song, A. Vantomme, K. Lorenz, E. Alves, and M. Bockowski, Phys. Rev. B 81, 085209 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085209
14.
M. Fialho, K. Lorenz, S. Magalhães, J. Rodrigues, N. F. Santos, T. Monteiro, and E. Alves, Nucl. Instrum. Methods Phys. Res., Sect. B 307, 495 (2013).
http://dx.doi.org/10.1016/j.nimb.2013.01.010
15.
M. Fialho and K. Lorenz, AIP Conf. Proc. 1496, 63 (2012).
http://dx.doi.org/10.1063/1.4766490
16.
M. A. Moram and M. E. Vickers, Rep. Prog. Phys. 72, 036502 (2009).
http://dx.doi.org/10.1088/0034-4885/72/3/036502
17.
V. Davydov, I. Goncharuk, A. Smirnov, A. Nikolaev, W. Lundin, A. Usikov, A. Klochikhin, J. Aderhold, J. Graul, O. Semchinova, and H. Harima, Phys. Rev. B 65, 125203 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.125203
18.
H. Harima, J. Phys.: Condens. Matter 14, R967 (2002).
http://dx.doi.org/10.1088/0953-8984/14/38/201
19.
A. Cros, H. Angerer, O. Ambacher, M. Stutzmann, R. Höpler, and T. Metzger, Solid State Commun. 104, 35 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00162-2
20.
V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12899
21.
D. N. Faye, E. Wendler, M. Felizardo, S. Magalhães, E. Alves, F. Brunner, M. Weyers, and K. Lorenz, J. Phys. Chem. C 120, 7277 (2016).
http://dx.doi.org/10.1021/acs.jpcc.6b00133
22.
A. Redondo-Cubero, K. Lorenz, R. Gago, N. Franco, M.-A. di Forte Poisson, E. Alves, and E. Muñoz, J. Phys. D: Appl. Phys. 43, 055406 (2010).
http://dx.doi.org/10.1088/0022-3727/43/5/055406
23.
K. P. O'Donnell, Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications ( Springer, 2009).
24.
T. Monteiro, C. Boemare, M. J. Soares, R. A. Sá Ferreira, L. D. Carlos, K. Lorenz, R. Vianden, and E. Alves, Phys. B: Condens. Matter 308–310, 22 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00656-1
25.
K. Wang, K. O'Donnell, B. Hourahine, R. Martin, I. Watson, K. Lorenz, and E. Alves, Phys. Rev. B 80, 125206 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125206
26.
K. Lorenz, E. Alves, F. Gloux, P. Ruterana, M. Peres, A. J. Neves, and T. Monteiro, J. Appl. Phys. 107, 023525 (2010).
http://dx.doi.org/10.1063/1.3291100
27.
K. Lorenz, U. Wahl, E. Alves, E. Nogales, S. Dalmasso, R. W. Martin, K. P. O. ‘Donnell, M. Wojdak, A. Braud, T. Monteiro, T. Wojtowicz, P. Ruterana, S. Ruffenach, and O. Briot, Opt. Mater. 28, 750 (2006).
http://dx.doi.org/10.1016/j.optmat.2005.09.015
28.
J. Rodrigues, S. M. C. Miranda, N. F. Santos, A. J. Neves, E. Alves, K. Lorenz, and T. Monteiro, Mater. Chem. Phys. 134, 716 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.03.056
29.
P. Ruterana, B. Lacroix, and K. Lorenz, J. Appl. Phys. 109, 013506 (2011).
http://dx.doi.org/10.1063/1.3527944
30.
A. R. Goni, K. Strössner, K. Syassen, and M. Cardona, Phys. Rev. B 36, 1581 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.1581
31.
S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors ( John Wiley & Sons, 2009).
32.
F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L. Wei, J. Appl. Phys. 92, 4837 (2002).
http://dx.doi.org/10.1063/1.1508420
33.
R. Collazo and N. Dietz, in Photoelectrochemical Water Splitting: Issues and Perspectives, edited by H.-J. Lewerenz and L. M. Peter ( RSC Publishing, 2013), pp. 193222.
34.
S. Jain, M. Willander, and R. Van Overstraeten, Compound Semiconductors Strained Layers and Devices ( Springer Science & Business Media, 2000).
35.
J. Gruber, U. Vetter, H. Hofsäss, B. Zandi, and M. Reid, Phys. Rev. B 70, 245108 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.245108
36.
H. J. Lozykowski, W. M. Jadwisienczak, A. Bensaoula, and O. Monteiro, Microelectron. J. 36, 453 (2005).
http://dx.doi.org/10.1016/j.mejo.2005.02.045
37.
Y. Glinka, H. Everitt, D. Lee, and A. Steckl, Phys. Rev. B 79, 113202 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.113202
38.
U. Hömmerich, E. E. Nyein, D. S. Lee, J. Heikenfeld, A. J. Steckl, and J. M. Zavada, Mater. Sci. Eng. B 105, 91 (2003).
http://dx.doi.org/10.1016/j.mseb.2003.08.022
39.
M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).
http://dx.doi.org/10.1063/1.1868059
40.
T. Ogino and M. Aoki, Jpn. J. Appl. Phys., Part 1 19, 2395 (1980).
http://dx.doi.org/10.1143/JJAP.19.2395
41.
J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
http://dx.doi.org/10.1063/1.117767
42.
R. Seitz, C. Gaspar, T. Monteiro, E. Pereira, M. Leroux, B. Beaumont, and P. Gibart, MRS Internet J. Nitride Semicond. Res. 2, e36 (1997).
http://dx.doi.org/10.1557/S1092578300001629
43.
M. A. Reshchikov, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 78, 2882 (2001).
http://dx.doi.org/10.1063/1.1370119
44.
M. A. Reshchikov, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 81, 4970 (2002).
http://dx.doi.org/10.1063/1.1531227
45.
V. Darakchieva, T. Monteiro, J. Rodrigues, M. T. Son, M.-Y. Xie, N. Ben Sedrine, E. Alves, A. Usui, C. Hemmingson, and B. Monemar, in Oral Presentation ( ICNS-9, 2011).
46.
M. A. Reshchikov, J. D. McNamara, F. Zhang, M. Monavarian, A. Usikov, H. Helava, Y. Makarov, and H. Morkoç, Phys. Rev. B 94, 035201 (2016).
http://dx.doi.org/10.1103/PhysRevB.94.035201
47.
M. Peres, S. Magalhaes, N. Franco, M. Soares, A. Neves, E. Alves, K. Lorenz, and T. Monteiro, Microelectron. J. 40, 377 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.07.032
48.
J. Rodrigues, M. Fialho, S. Magalhães, M. R. Correia, L. Rino, E. Alves, A. J. Neves, K. Lorenz, and T. Monteiro, J. Lumin. 178, 249 (2016).
http://dx.doi.org/10.1016/j.jlumin.2016.05.018
49.
E. Schubert, E. Göbel, Y. Horikoshi, K. Ploog, and H. Queisser, Phys. Rev. B 30, 813 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.813
50.
A. Wakahara, Y. Nakanishi, T. Fujiwara, A. Yoshida, T. Ohshima, and T. Kamiya, Phys. Status Solidi A 202, 863 (2005).
http://dx.doi.org/10.1002/pssa.200461430
51.
A. Wakahara, K. Takemoto, F. Oikawa, H. Okada, T. Ohshima, and H. Itoh, Phys. Status Solidi A 205, 56 (2008).
http://dx.doi.org/10.1002/pssa.200776703
52.
G. Steude, B. K. Meyer, A. Göldner, A. Hoffmann, F. Bertram, J. Christen, H. Amano, and I. Akasaki, Appl. Phys. Lett. 74, 2456 (1999).
http://dx.doi.org/10.1063/1.123879
53.
A. N. Westmeyer, S. Mahajan, K. K. Bajaj, J. Y. Lin, H. X. Jiang, D. D. Koleske, and R. T. Senger, J. Appl. Phys. 99, 013705 (2006).
http://dx.doi.org/10.1063/1.2158492
54.
W. T. Carnall, J. Chem. Phys. 49, 4424 (1968).
http://dx.doi.org/10.1063/1.1669893
55.
R. K. Ahrenkiel, Minority Carriers In III–V Semiconductors: Physics and Applications ( Elsevier, 1993).
56.
L. Bergman and J. L. McHale, Handbook of Luminescent Semiconductor Materials ( CRC Press, 2011).
57.
B. Gil, Physics of Wurtzite Nitrides and Oxides ( Springer International Publishing, Cham, 2014).
58.
E. Berkowicz, D. Gershoni, G. Bahir, E. Lakin, D. Shilo, E. Zolotoyabko, A. C. Abare, S. P. Denbaars, and L. A. Coldren, Phys. Rev. B 61, 10994 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.10994
59.
S. Marcinkevičius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 111107 (2013).
http://dx.doi.org/10.1063/1.4820839
60.
S. Magalhães, I. M. Watson, S. Pereira, N. Franco, L. T. Tan, R. W. Martin, K. P. O'Donnell, E. Alves, J. P. Araújo, T. Monteiro, and K. Lorenz, J. Phys. D: Appl. Phys. 48, 015103 (2015).
http://dx.doi.org/10.1088/0022-3727/48/1/015103
61.
A. Wakahara, Opt. Mater. 28, 731 (2006).
http://dx.doi.org/10.1016/j.optmat.2005.09.011
62.
H. J. Lozykowski and W. M. Jadwisienczak, Phys. Status Solidi B 244, 2109 (2007).
http://dx.doi.org/10.1002/pssb.200642152
63.
H. Lozykowski, Phys. Rev. B 48, 17758 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.17758
64.
P. Dorenbos and E. van der Kolk, Opt. Mater. 30, 1052 (2008).
http://dx.doi.org/10.1016/j.optmat.2007.05.019
65.
H. Y. Peng, C. W. Lee, H. O. Everitt, D. S. Lee, A. J. Steckl, and J. M. Zavada, Appl. Phys. Lett. 86, 051110 (2005).
http://dx.doi.org/10.1063/1.1861132
66.
J. Lackowicz, Principles of Fluorescence Spectroscopy ( Plenum Press, 1983).
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/8/10.1063/1.4961931
Loading
/content/aip/journal/jap/120/8/10.1063/1.4961931
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/8/10.1063/1.4961931
2016-08-31
2016-09-29

Abstract

Al GaN samples, with different AlN molar fractions, x = 0, 0.15, 0.77, and 1, grown by halide vapor phase epitaxy were implanted with Tm ions. Photoluminescence (PL) measurements revealed that after thermal annealing all the samples exhibit intraionic Tm3+ luminescence. In samples with x > 0, the low temperature emission is dominated by the lines that appear in the near infrared (NIR) spectral region, corresponding to the overlapped 1G3H and 3H3H multiplet transitions. A detailed spectroscopic analysis of NIR emission of the thulium implanted and annealed Al GaN layers is presented by using temperature dependent steady-state PL, room temperature PL excitation, and time resolved PL. The results indicate that the excitonic features sensitive to the alloy disorder are involved in the excitation population processes of the Tm3+ luminescence and the highest thermal stability for the NIR emission occurs for the AlN:Tm sample.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/8/1.4961931.html;jsessionid=tgkg81QcqkkW0adrOqd6SAYH.x-aip-live-06?itemId=/content/aip/journal/jap/120/8/10.1063/1.4961931&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/8/10.1063/1.4961931&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/8/10.1063/1.4961931'
Right1,Right2,Right3,