Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Y. Zhan, Y. Mei, and L. Zheng, J. Mater. Chem. C 2, 1220 (2014).
G. P. Crawford, Inf. Disp. 21, 10 (2005); ISSN: 03620972.
Y. Jongseung, A. J. Baca, P. Sang-Il, P. Elvikis, J. B. Geddes III, L. Lanfang, K. Rak Hwan, X. Jianliang, W. Shuodao, K. Tae-Ho, M. J. Motala, A. Bok Yeop, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, H. Yonggang, A. Rockett, and J. A. Rogers, Nat. Mater. 7, 907 (2008).
S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and B. Zhenan, Nat. Mater. 9, 859 (2010).
A. Nathan, B.-K. Park, Q. Ma, A. Sazonov, and J. A. Rowlands, Microelectron. Reliab. 42, 735 (2002).
D.-H. Kim, N. Lu, R. Ghaffari, Y.-S. Kim, S. P. Lee, L. Xu, J. Wu, R.-H. Kim, J. Song, Z. Liu, J. Viventi, B. De Graff, B. Elolampi, M. Mansour, M. J. Slepian, S. Hwang, J. D. Moss, S.-M. Won, Y. Huang, B. Litt, and J. A. Rogers, Nat. Mater. 10, 316 (2011).
S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim, ACS Nano 9, 5929 (2015).
C. Pang, G.-Y. Lee, T.-I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, Nat. Mater. 11, 795 (2012).
G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, Nat. Commun. 4, 1859 (2013).
K. Dae-Hyeong, J. Viventi, J. J. Amsden, X. Jianliang, L. Vigeland, K. Yun-Soung, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, H. Yonggang, H. Keh-Chih, M. R. Zakin, B. Litt, and J. A. Rogers, Nat. Mater. 9, 511 (2010).
K. Dae-Hyeong, L. Nanshu, M. Rui, K. Yun-Soung, K. Rak-Hwan, W. Shuodao, W. Jian, W. Sang Min, T. Hu, A. Islam, Y. Ki Jun, K. Tae-il, R. Chowdhury, Y. Ming, X. Lizhi, L. Ming, C. Hyun-Joong, K. Hohyun, M. McCormick, L. Ping, Z. Yong-Wei, F. G. Omenetto, H. Yonggang, T. Coleman, and J. A. Rogers, Science 333, 838 (2011).
S. Khan, L. Lorenzelli, and R. S. Dahiya, IEEE Sens. J. 15, 3164 (2015).
M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2006).
T.-H. Kim, A. Carlson, J.-H. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, Appl. Phys. Lett. 94, 113502 (2009).
M. B. Tucker, D. R. Hines, and T. Li, J. Appl. Phys. 106, 103504 (2009).
B. Kang, J. Yun, S.-G. Kim, and M. Yang, Small 9, 2111 (2013).
F. Cavallo and M. G. Lagally, Soft Matter 6, 439 (2010).
H. C. Ko, G. Shin, S. Wang, M. P. Stoykovich, J. W. Lee, D.-H. Kim, J. S. Ha, Y. Huang, K.-C. Hwang, and J. A. Rogers, Small 5, 2703 (2009).
J. A. Rogers, M. G. Lagally, and R. G. Nuzzo, Nature 477, 45 (2011).
A. Carlson, H.-J. Kim-Lee, J. Wu, P. Elvikis, H. Cheng, A. Kovalsky, S. Elgan, Q. Yu, P. M. Ferreira, Y. Huang, K. T. Turner, and J. A. Rogers, Appl. Phys. Lett. 98, 264104 (2011).
H. Cheng, J. Wu, Q. Yu, H.-J. Kim-Lee, A. Carlson, K. T. Turner, K.-C. Hwang, Y. Huang, and J. A. Rogers, Mech. Res. Commun. 43, 46 (2012).
H. J. Kim-Lee, A. Carlson, D. S. Grierson, J. A. Rogers, and K. T. Turner, J. Appl. Phys. 115, 143513 (2014).
S. Kim, A. Carlson, H. Cheng, S. Lee, J.-K. Park, Y. Huang, and J. A. Rogers, Appl. Phys. Lett. 100, 211904 (2012).
S. Liu, A. Peyronnel, Q. J. Wang, and L. M. Keer, Tribol. Lett. 18, 505 (2005).
J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, Opt. Mater. Express 3, 1313 (2013).

Data & Media loading...


Article metrics loading...



A rolling-based printing approach for transferring arrays of patterned micro- and nano-structures directly from rigid fabrication substrates onto flexible substrates is presented. Transfer-printing experiments show that the new process can achieve high-yield and high-fidelity transfer of silicon nanomembrane components with diverse architectures to polyethylene terephthalate substrates over chip-scale areas (>1 × 1 cm2) in <0.3 s. The underlying mechanics of the process are investigated through finite element simulations of the contact and transfer process. These mechanics models provide guidance for controlling the contact area and strain in the flexible substrate during transfer, both of which are key for achieving reproducible and controlled component transfer over large areas.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd