Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4961605
1.
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 2831 (2015).
http://dx.doi.org/10.1002/pssr.201409520
2.
D. Herrmann et al., “ CIGS module manufacturing with high deposition rates and efficiencies,” paper presented at 40th IEEE, PVSC, Denver, CO, USA, 8–13 June 2014.
3.
A. Goetzberger, C. Hebling, and H.-W. Schock, Mater. Sci. Eng., R 40, 146 (2003).
http://dx.doi.org/10.1016/S0927-796X(02)00092-X
4.
S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, and K. Masubara, Prog. Photovoltaics 18, 453566 (2010).
http://dx.doi.org/10.1002/pip.969
5.
V. Alberts, J. Titus, and R. W. Birkmire, Thin Solid Films 451–452, 207211 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.10.092
6.
K. Kushiya, “ CIS-based thin-film PV technology in solar frontier K.K.,” Sol. Energy Mater. Sol. Cells 122, 309313 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.09.014
7.
S. Yang, K. M. Lin, W. C. Lee, C. C. Lin, and L. Chu, “ Achievement of 15.1% total area efficiency on 1.09 m2 monolithic CIGSeS modules in TSMC solar production line,” in 39th IEEE Photovoltaic Specialists Conference (2013).
8.
A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Nat. Mater. 12, 1107 (2013).
http://dx.doi.org/10.1038/nmat3789
9.
K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. S. Ward, and A. Duda, Prog. Photovoltaics 11, 225230 (2003).
http://dx.doi.org/10.1002/pip.494
10.
I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235239 (2008).
http://dx.doi.org/10.1002/pip.822
11.
M. Powalla, P. Jackson, W. Witte, D. Hariskos, S. Paetel, C. Tschamber, and W. Wischmann, Sol. Energy Mater. Sol. Cells 119, 5158 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.05.002
12.
S.-H. Wei and A. Zunger, J. Appl. Phys. 78, 3846 (1995).
http://dx.doi.org/10.1063/1.359901
13.
S. Chen, X. G. Gong, and S.-H. Wei, Phys. Rev. B 75, 2052091 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205209
14.
M. Marudachalam, H. Hichri, R. Klenk, R. W. Birkmire, and W. N. Shafarman, Appl. Phys. Lett. 67, 39783980 (1995).
http://dx.doi.org/10.1063/1.114424
15.
R. Kamada, W. N. Shafarman, and R. W. Birkmire, Sol. Energy Mater. Sol. Cells 94, 451456 (2010).
http://dx.doi.org/10.1016/j.solmat.2009.11.004
16.
R. Caballero, C. Guillen, M. T. Gutierrez, and C. A. Kaufmann, Prog. Photovoltaics 14, 145153 (2006).
http://dx.doi.org/10.1002/pip.649
17.
G. M. Hanket, W. N. Shafarman, B. E. McCandless, and R. W. Birkmire, J. Appl. Phys. 102, 074922-1074922-10 (2007).
http://dx.doi.org/10.1063/1.2787151
18.
Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, and K. Kushiya, Sol. Energy Mater. Sol. Cells 93(8), 13181320 (2009).
http://dx.doi.org/10.1016/j.solmat.2009.02.004
19.
TSMC Solar Commercial-size Modules (1.09m2) Set CIGS 15.7% Efficiency Record, TSMC Solar 2013 Press Release, June 18.
20.
TSMC Solar Commercial-size Modules (1.09m2) Set CIGS 16.5% Efficiency Record, TSMC Solar 2015 Press Release, April 28.
21.
O. Lundberg, J. Lu, A. Rockett, M. Edoff, and L. Stolt, J. Phys. Chem. Solids 64(9–10), 1499 (2003).
http://dx.doi.org/10.1016/S0022-3697(03)00127-6
22.
O. Knacke, O. Kubaschewski, and K. Hessellmann, Thermo-Chemical Properties of Inorganic Substances, 2nd ed. ( Springer-Verlag, Heidelberg, 1991).
23.
W. K. Metzger, I. L. Repins, M. Romero, P. Dippo, M. Contreras, R. Noufi, and D. Levi, Thin Solid Films 517, 2360 (2009).
http://dx.doi.org/10.1016/j.tsf.2008.11.050
24.
S. S. Hegedus and W. N. Shafarman, Prog. Photovoltaics 12, 164169 (2004).
http://dx.doi.org/10.1002/pip.518"10.1002/pip.518
25.
P. Würfel, Physics of Solar Cells: From Principles to New Concepts ( Wiley-VCH, Weinheim, 2005), p. 138.
26.
F. A. Lindholm, J. G. Fossum, and E. L. Burgess, IEEE Trans. Electron Devices 26, 165 (1979);
http://dx.doi.org/10.1109/T-ED.1979.19400
F. A. Lindholm, J. G. Fossum, and E. L. Burgess, in 12th IEEE Photovoltaic Specialists Conference (1976), p. 33.
27.
K. Mitchell, A. Fahrenbruch, and R. Bube, J. Appl. Phys. 48, 4365 (1977).
http://dx.doi.org/10.1063/1.323429
28.
A. Rothwarf, J. Phillips, and N. Wyeth, in Proceedings of 13th IEEE Photovoltaic Specialists Conference (1978), p. 399.
29.
R. A. Crandall, J. Appl. Phys. 53, 3350 (1982).
http://dx.doi.org/10.1063/1.331002
30.
J. Phillips, J. Titus, and D. Hoffman, in Proceedings of 26th IEEE Photovoltaic Specialists Conference (1997), p. 463.
31.
K. Hecht, Z. Phys. 77, 235 (1932).
http://dx.doi.org/10.1007/BF01338917
32.
T. Markvart, IEEE Trans. Electron Devices 44, 1182 (1997).
http://dx.doi.org/10.1109/16.595951
33.
R. S. Crandall, J. Appl. Phys. 54, 7176 (1983).
http://dx.doi.org/10.1063/1.331955
34.
M. Wolf, Proc. IEEE 51, 674 (1963).
http://dx.doi.org/10.1109/PROC.1963.2260
35.
D. J. Friedman, A. J. Ptak, S. R. Kurtz, and J. F. Geisz, in Conference Record of the 31th IEEE Photovoltaic Specialists Conference (2005), p. 691.
36.
R. S. Crandall, J. Appl. Phys. 55, 4418 (1984).
http://dx.doi.org/10.1063/1.333013
37.
E. A. Schiff, Sol. Energy Mater. Sol. Cells 78, 567 (2003).
http://dx.doi.org/10.1016/S0927-0248(02)00452-X
38.
C. Donolato, Appl. Phys. Lett. 46, 270 (1985).
http://dx.doi.org/10.1063/1.95654
39.
K. Misiakos and F. A. Lindholm, J. Appl. Phys. 58, 4743 (1985).
http://dx.doi.org/10.1063/1.336226
40.
S. Hegedus et al., Prog. Photovoltaics 15, 587 (2007).
http://dx.doi.org/10.1002/pip.767
41.
X. Liu and J. Sites, J. Appl. Phys. 75, 577 (1994).
http://dx.doi.org/10.1063/1.355842
42.
K. Misiakos and F. Lindholm, J. Appl. Phys. 64, 383 (1988).
http://dx.doi.org/10.1063/1.341439
43.
T. H. Glisson, J. R. Hauser, M. A. Littlejohn, and C. J. Williams, J. Electron. Mater. 7, 1 (1978).
http://dx.doi.org/10.1007/BF02656016
44.
S. Adachi, J. Appl. Phys. 61(10), 48694876 (1987).
http://dx.doi.org/10.1063/1.338352
45.
K. Kim et al., Prog. Photovoltaics 23, 765772 (2015).
http://dx.doi.org/10.1002/pip.2494
46.
D. S. Albin, J. R. Tuttle, G. D. Mooney, J. J. Carapella, A. Duda, A. Mason, and R. Noufi, in The Conference Record of the 21st IEEE Photovoltaic Specialists Conference ( IEEE, New York, 1990), p. 562.
47.
P. D. Paulson, R. W. Birkmire, and W. N. Shafarman, J. Appl. Phys. 94, 879 (2003).
http://dx.doi.org/10.1063/1.1581345
48.
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, Phys. Rev. B 63, 075203 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.075203
49.
J. W. Lee, J. D. Cohen, and W. N. Shafarman, Thin Solid Films 480–481, 336 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.087
50.
M. Gloeckler, Ph.D. thesis, Colorado State University, 2005.
51.
A. de Vos, Sol. Cells 8, 283 (1983).
http://dx.doi.org/10.1016/0379-6787(83)90067-4
52.
Th. Orgis, M. Malberg, and R. Scheer, J. Appl. Phys. 114, 214506 (2013).
http://dx.doi.org/10.1063/1.4840995
53.
M. Gloeckler and J. R. Sites, “ Efficiency limitations for wide-band-gap chalcopyrite solar cells,” Thin Solid Films 480–481, 241245 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.11.018
54.
X. Liu and J. R. Sites, AIP Conf. Proc. 353, 444 (1996).
http://dx.doi.org/10.1063/1.49373
55.
R. Scheer, Trends Vac. Sci. Technol. 2, 77 (1997).
56.
T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, Sol. Energy Mater. Sol. Cells 67, 83 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00266-X
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4961605
Loading
/content/aip/journal/jap/120/9/10.1063/1.4961605
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4961605
2016-09-01
2016-09-28

Abstract

Co-optimization of the gallium and sulfur profiles in penternary Cu(In,Ga)(Se,S) thin film solar cell and its impacts on device performance and variability are investigated in this work. An absorber formation method to modulate the gallium profiling under low sulfur-incorporation is disclosed, which solves the problem of Ga-segregation in selenization. Flatter Ga-profiles, which lack of experimental investigations to date, are explored and an optimal Ga-profile achieving 17.1% conversion efficiency on a 30 cm × 30 cm sub-module is presented. Flatter Ga-profile gives rise to the higher V × J by improved bandgap matching to solar spectrum, which is hard to be achieved by the case of Ga-accumulation. However, voltage-induced carrier collection loss is found, as evident from the measured voltage-dependent photocurrent characteristics based on a small-signal circuit model. The simulation results reveal that the loss is attributed to the synergistic effect of the detrimental gallium and sulfur gradients, which can deteriorate the carrier collection especially in quasi-neutral region (QNR). Furthermore, the underlying physics is presented, and it provides a clear physical picture to the empirical trends of device performance, I–V characteristics, and voltage-dependent photocurrent, which cannot be explained by the standard solar circuit model. The parameter “F” and front sulfur-gradient are found to play critical roles on the trade-off between space charge region (SCR) recombination and QNR carrier collection. The co-optimized gallium and sulfur gradients are investigated, and the corresponding process modification for further efficiency-enhancement is proposed. In addition, the performance impact of sulfur-gradient variation is studied, and a gallium design for suppressing the sulfur-induced variability is proposed. Device performances of varied Ga-profiles with front sulfur-gradients are simulated based on a compact device model. Finally, an exploratory path toward 20% high-efficiency Ga-profile with robustness against sulfur-induced performance variability is presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4961605.html;jsessionid=Klvr8yCiyjYUxGFGC8fDCF4U.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4961605&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4961605&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4961605'
Right1,Right2,Right3,