Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4961867
1.
P. Lejcek, Grain Boundary Segregation in Metals ( Springer Science and Business Media, 2010).
2.
L. Priester, Grain Boundaries: From Theory to Engineering ( Springer Science and Business Media, 2012).
3.
M. Všianská and M. Šob, Prog. Mater. Sci. 56, 817 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2011.01.008
4.
R. Wu, A. Freeman, and G. Olson, Science 265, 376 (1994).
http://dx.doi.org/10.1126/science.265.5170.376
5.
J. S. Braithwaite and P. Rez, Acta Mater. 53, 2715 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.02.033
6.
M. Rajagopalan, M. Tschopp, and K. Solanki, JOM 66, 129 (2014).
http://dx.doi.org/10.1007/s11837-013-0807-9
7.
M. Bhatia and K. Solanki, J. Appl. Phys. 114, 244309 (2013).
http://dx.doi.org/10.1063/1.4858401
8.
D. Gelles, P. Rice, S. Zinkle, and H. Chung, J. Nucl. Mater. 258–263, 1380 (1998).
http://dx.doi.org/10.1016/S0022-3115(98)00206-2
9.
N. Nita, Y. Anma, H. Matsui, T. Ohkubo, and K. Hono, J. Nucl. Mater. 367–370, 858 (2007).
http://dx.doi.org/10.1016/j.jnucmat.2007.03.069
10.
B. Zhu, S. Yang, J. Ding, W. Zhang, Y. Long, and F. Wan, Fusion Eng. Des. 100, 171 (2015).
http://dx.doi.org/10.1016/j.fusengdes.2015.05.055
11.
A. Möslang and T. Wiss, Nat. Mater. 5, 679 (2006).
http://dx.doi.org/10.1038/nmat1715
12.
J. R. Rice and J.-S. Wang, Mater. Sci. Eng. A 107, 23 (1989).
http://dx.doi.org/10.1016/0921-5093(89)90372-9
13.
E. Wachowicz, T. Ossowski, and A. Kiejna, Phys. Rev. B 81, 094104 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.094104
14.
W. Geng, A. Freeman, and G. Olson, Phys. Rev. B 63, 165415 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.165415
15.
K.-D. Bauer, M. Todorova, K. Hingerl, and J. Neugebauer, Acta Mater. 90, 69 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.02.018
16.
M. Kim, C. B. Geller, and A. Freeman, Scr. Mater. 50, 1341 (2004).
http://dx.doi.org/10.1016/j.scriptamat.2004.02.003
17.
E. Meslin, C.-C. Fu, A. Barbu, F. Gao, and F. Willaime, Phys. Rev. B 75, 094303 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094303
18.
H. Jin, I. Elfimov, and M. Militzer, J. Appl. Phys. 115, 093506 (2014).
http://dx.doi.org/10.1063/1.4867400
19.
G.-H. Lu, Y. Zhang, S. Deng, T. Wang, M. Kohyama, R. Yamamoto, F. Liu, K. Horikawa, and M. Kanno, Phys. Rev. B 73, 224115 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224115
20.
S. Zhang, O. Y. Kontsevoi, A. J. Freeman, and G. B. Olson, Phys. Rev. B 82, 224107 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.224107
21.
S. Zhang, O. Y. Kontsevoi, A. J. Freeman, and G. B. Olson, Acta Mater. 59, 6155 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.06.028
22.
M. Yamaguchi, M. Shiga, and H. Kaburaki, Science 307, 393 (2005).
http://dx.doi.org/10.1126/science.1104624
23.
V. I. Razumovskiy, A. Lozovoi, and I. Razumovskii, Acta Mater. 82, 369 (2015).
http://dx.doi.org/10.1016/j.actamat.2014.08.047
24.
J. Kang, G. C. Glatzmaier, and S.-H. Wei, Phys. Rev. Lett. 111, 055502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.055502
25.
W. Liu, C. Ren, H. Han, J. Tan, Y. Zou, X. Zhou, P. Huai, and H. Xu, J. Appl. Phys. 115, 043706 (2014).
http://dx.doi.org/10.1063/1.4863181
26.
G. Duscher, M. F. Chisholm, U. Alber, and M. Rühle, Nat. Mater. 3, 621 (2004).
http://dx.doi.org/10.1038/nmat1191
27.
R. Schweinfest, A. T. Paxton, and M. W. Finnis, Nature 432, 1008 (2004).
http://dx.doi.org/10.1038/nature03198
28.
W. Setyawan and R. J. Kurtz, Scr. Mater. 66, 558 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.01.002
29.
Z. W. Li, X. S. Kong, W. Liu, C. S. Liu, and Q. F. Fang, Chin. Phys. B 23, 106107 (2014).
http://dx.doi.org/10.1088/1674-1056/23/10/106107
30.
R. Kurtz, K. Abe, V. Chernov, V. Kazakov, G. Lucas, H. Matsui, T. Muroga, G. Odette, D. Smith, and S. Zinkle, J. Nucl. Mater. 283–287, 70 (2000).
http://dx.doi.org/10.1016/S0022-3115(00)00351-2
31.
R. J. Kurtz, K. Abe, V. Chernov, D. Hoelzer, H. Matsui, T. Muroga, and G. R. Odette, J. Nucl. Mater. 329–333, 47 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.04.299
32.
J. Chen, V. Chernov, R. J. Kurtz, and T. Muroga, J. Nucl. Mater. 417, 289 (2011).
http://dx.doi.org/10.1016/j.jnucmat.2011.02.015
33.
T. Muroga, J. Chen, V. Chernov, R. Kurtz, and M. Le Flem, J. Nucl. Mater. 455, 263 (2014).
http://dx.doi.org/10.1016/j.jnucmat.2014.06.025
34.
N. Heo, T. Nagasaka, T. Muroga, and H. Matsui, J. Nucl. Mater. 307–311, 620 (2002).
http://dx.doi.org/10.1016/S0022-3115(02)01040-1
35.
T. Muroga, in Comprehensive Nuclear Materials, edited by R. J. M. Konings ( Elsevier, Oxford, 2012), p. 391.
36.
P. Zhang, T. Zou, Z. Zheng, and J. Zhao, Comput. Mater. Sci. 110, 163 (2015).
http://dx.doi.org/10.1016/j.commatsci.2015.08.028
37.
P. Zhang, T. Zou, J. Zhao, P. Zheng, and J. Chen, Nucl. Instrum. Methods Phys. Res., Sect. B 352, 121 (2015).
http://dx.doi.org/10.1016/j.nimb.2015.01.009
38.
H.-B. Zhou, S. Jin, and W. Yan, Sci. China-Phys. Mech. Astron. 56, 1389 (2013).
http://dx.doi.org/10.1007/s11433-013-5109-2
39.
H.-B. Zhou, S. Jin, Y. Zhang, X.-L. Shu, and L.-L. Niu, Chin. Phys. B 23, 056104 (2014).
http://dx.doi.org/10.1088/1674-1056/23/5/056104
40.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
41.
G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
42.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
43.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
44.
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 48, 4978 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4978.2
45.
D. Bolef, R. Smith, and J. Miller, Phys. Rev. B 3, 4100 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.4100
46.
X. Zhang, J. Tang, L. Deng, H. Deng, S. Xiao, and W. Hu, Scr. Mater. 100, 106 (2015).
http://dx.doi.org/10.1016/j.scriptamat.2015.01.006
47.
ASM Alloy Phase Diagrams Center, edited by P. Villars, H. Okamoto, and K. Cenzual ( ASM International, Materials Park, OH, 2006).
48.
P. Zhang, X. Li, J. Zhao, P. Zheng, and J. Chen, J. Nucl. Mater. 468, 147 (2016).
http://dx.doi.org/10.1016/j.jnucmat.2015.11.021
49.
M. M. Gong, F. Liu, and Y. Z. Chen, J. Alloys Compd. 682, 8997 (2016).
50.
J. J. Bean and K. P. McKenna, Acta Mater. 110, 246 (2016).
http://dx.doi.org/10.1016/j.actamat.2016.02.040
51.
V. B. Deyirmenjian, V. Heine, M. C. Payne, V. Milman, R. M. Lynden-Bell, and M. W. Finnis, Phys. Rev. B 52, 15191 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.15191
52.
M. Yamaguchi, Metall. Mater. Trans. A 42, 319 (2011).
http://dx.doi.org/10.1007/s11661-010-0381-5
53.
Z. Tian, J. Yan, W. Xiao, and W. Geng, Phys. Rev. B 79, 144114 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.144114
54.
E. T. Bentria, I. K. Lefkaier, and B. Bentria, Mater. Sci. Eng. A 577, 197 (2013).
http://dx.doi.org/10.1016/j.msea.2013.04.047
55.
J. H. Rose, J. Ferrante, and J. R. Smith, Phys. Rev. Lett. 47, 675 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.675
56.
X. Li, S. Schönecker, J. Zhao, B. Johansson, and L. Vitos, Phys. Rev. B 87, 214203 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.214203
57.
T. Muroga, T. Nagasaka, J. Chen, Y. Li, and H. Watanabe, J. Nucl. Mater. 386–388, 606 (2009).
http://dx.doi.org/10.1016/j.jnucmat.2008.12.188
58.
B. Zhu, S. Yang, J. Ding, W. Zhang, Y. Long, and F. Wan, Mater. Lett. 161, 609 (2015).
http://dx.doi.org/10.1016/j.matlet.2015.09.080
59.
K. Sakai, M. Satou, M. Fujiwara, K. Takanashi, A. Hasegawa, and K. Abe, J. Nucl. Mater. 329–333, 457 (2004).
http://dx.doi.org/10.1016/j.jnucmat.2004.04.089
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4961867
Loading
/content/aip/journal/jap/120/9/10.1063/1.4961867
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4961867
2016-09-02
2016-09-27

Abstract

Effects of 3 (Ti-Ni), 4 (Zr-Pd), and 5 (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. The elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4961867.html;jsessionid=acG2RQN-_jlpL7ILSmDbsdJ-.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4961867&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4961867&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4961867'
Right1,Right2,Right3,