Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4961875
1.
A. K. Aggarwal and M. H. White, J. Appl. Phys. 55, 3682 (1984).
http://dx.doi.org/10.1063/1.332919
2.
D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, IEEE Trans. Electron Devices 56, 648 (2009).
http://dx.doi.org/10.1109/TED.2009.2014198
3.
K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, IEEE Trans. Electron Devices 55, 547 (2008).
http://dx.doi.org/10.1109/TED.2007.912365
4.
S. Kothari, C. Joishi, S. Ghosh, D. Biswas, D. Vaidya, S. Ganguly, and S. Lodha, Appl. Phys. Express 9, 071302 (2016).
http://dx.doi.org/10.7567/APEX.9.071302
5.
S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices 41, 2357 (1994).
http://dx.doi.org/10.1109/16.337449
6.
S. Potbhare, in Proceedings of the SISPAD (2005), p. 95.
7.
W.-C. Shih, “ Device simulation of density of interface states of temperature dependent carrier concentration in 4H-SiC MOSFETs,” M.S. thesis, Auburn University, 2014.
8.
Y. Hu, S. Li, G. Jiao, Y. Q. Wu, D. Huang, P. D. Ye, and M.-F. Li, IEEE Trans. Nanotechnol. 12, 806 (2013).
http://dx.doi.org/10.1109/TNANO.2013.2274282
9.
K. Chain, J.-H. Huang, J. Duster, P. K. Ko, and C. Hu, Semicond. Sci. Technol. 12(4), 355 (1997).
http://dx.doi.org/10.1088/0268-1242/12/4/002
10.
G. Roll, Leakage Current and Defect Characterization of Short Channel MOSFETs ( Logos Verlag, Berlin, 2012).
11.
M. Musolino, D. van Treeck, A. Tahraoui, L. Scarparo, C. De Santi, M. Meneghini, E. Zanoni, L. Geelhaar, and H. Riechert, AIP J. Appl. Phys. 119, 044502 (2016).
http://dx.doi.org/10.1063/1.4940949
12.
D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, IEEE Electron Device Lett. 29, 328330 (2008).
http://dx.doi.org/10.1109/LED.2008.918272
13.
K. Martens, B. Kaczer, T. Grasser, B. De Jaeger, M. Meuris, H. E. Maes, and G. Groeseneken, IEEE Electron Device Lett. 29, 1364 (2008).
http://dx.doi.org/10.1109/LED.2008.2007582
14.
W. Fang, E. Simoen, H. Arimura, J. Mitard, S. Sioncke, H. Mertens, A. Mocuta, N. Collaert, J. Luo, C. Zhao, A. V.-Y. Thean, and C. Claeys, IEEE Trans. Electron Devices 62, 2078 (2015).
http://dx.doi.org/10.1109/TED.2015.2430367
15.
W. Goes, M. Waltl, Y. Wimmer, G. Rzepa, and T. Grasser, in Proceedings of the SISPAD (2014), p. 77.
16.
N. A. Chowdhury and D. Misra, J. Electrochem. Soc. 154, G30 (2007).
http://dx.doi.org/10.1149/1.2402989
17.
J. Koomen, Solid State Electron. 16, 801 (1973).
http://dx.doi.org/10.1016/0038-1101(73)90177-9
18.
K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, IEEE Trans. Electron Devices 37, 654 (1990).
http://dx.doi.org/10.1109/16.47770
19.
P. Magnone, F. Crupi, G. Giusi, C. Pace, E. Simoen, C. Claeys, L. Pantisano, D. Maji, V. R. Rao, and P. Srinivasan, IEEE Trans. Device Mater. Reliab. 9, 180 (2009).
http://dx.doi.org/10.1109/TDMR.2009.2020406
20.
P. Bhatt, K. Chaudhuri, S. Kothari, A. Nainani, and S. Lodha, Appl. Phys. Lett. 103, 172107 (2013).
http://dx.doi.org/10.1063/1.4826142
21.
A. Ray, R. Nori, P. Bhatt, S. Lodha, R. Pinto, V. R. Rao, F. Jomard, and M. Neumann-Spallart, J. Vac. Sci. Technol., A 32, 061302 (2014).
http://dx.doi.org/10.1116/1.4896756
22.
G. Kapila, N. Goyal, V. D. Maheta, C. Olsen, K. Ahmed, and S. Mahapatra, in Proceedings of the IEDM (2008), p. 1.
23.
T. H. Ning and C. T. Sah, Phys. Rev. B 6, 4605 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4605
24.
P. Magnone, C. Pace, F. Crupi, and G. Giusi, Microelectron. Reliab. 47, 2109 (2007).
http://dx.doi.org/10.1016/j.microrel.2006.11.001
25.
N. K. Rajan, D. A. Routenberg, J. Chen, and M. A. Reed, Appl. Phys. Lett. 97, 243501 (2010).
http://dx.doi.org/10.1063/1.3526382
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4961875
Loading
/content/aip/journal/jap/120/9/10.1063/1.4961875
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4961875
2016-09-02
2016-09-27

Abstract

We report temperature (RT-150 K) and field dependent low frequency noise measurements on Ge n-FETs. Specifically, we delineate the temperature, field, and interfacial layer (GeON vs. GeO) dependence of the gate overdrive index () on corresponding changes in volume interface trap density () and mobility (). For  < 1 × 1020 cm−3 eV−1, the dominant noise mechanism, number or mobility fluctuation, depends on the change in , but for  > 1 × 1020 cm−3eV−1 near the conduction band edge, changes in as well as determine the noise mechanism. Finally, we show that the values of Ge n-FETs are significantly different from conventional Si transistors as well as Ge p-FETs at RT and 150 K due to much higher and/or μ values of the Ge n-FETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4961875.html;jsessionid=LZtaRENCvk5yq5ToqreWEqHH.x-aip-live-02?itemId=/content/aip/journal/jap/120/9/10.1063/1.4961875&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4961875&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4961875'
Right1,Right2,Right3,