Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. Yamashita and S. Odanaka, “ Impact of crosstalk on delay time and a hierarchy of interconnects,” Tech. Dig. - Int. Electron Devices Meet. 1998, 291294 (1998).
M. R. Baklanov and K. Maex, “ Porous low dielectric constant materials for microelectronics,” Philos. Trans. R. Soc., A 364, 201215 (2006).
K. Vanstreels, C. Wu, M. Gonzalez, D. Schneider, D. Gidley, P. Verdonck, and M. Baklanov, “ Effect of pore structure of nanometer scale porous films on the measured elastic modulus,” Langmuir 29, 1202512035 (2013).
V. Sukharev, B. P. Shieh, R. Choudhury, C. Park, and K. C. Saraswat, “ Reliability studies on multilevel interconnection with intermetal dielectric air gaps,” Microelectron. Reliab. 41, 16311635 (2001).
L. C. Bassman, R. P. Vinci, B. P. Sheih, D.-k. Kim, J. P. Mcvittie, K. C. Saraswat, and M. D. Deal, Simulation of the effect of dielectric air gaps on interconnect reliability, ( Mater. Res. Soc. Symp. Proc., 1997), Vol. 473, pp. 323328.
P. Shieh, L. C. Bassman, D. K. Kim, K. C. Saraswat, M. D. Deal, and J. P. McVittie, “ Integration and reliability issues for low capacitance air-gap interconnect structures,” in Proceedings of the IEEE International Interconnect Technology Conference IITC (1998), pp. 125127.
R. J. O. M. Hoofman, R. Daamen, D. Ernur-Badaroglu, A. Humbert, S. L. Shue, and C. H. Yu, “ Air gaps as a viable alternative for low-k dielectrics in future technology nodes,” in Proceedings of the Advanced Metallization Conference (2007), pp. 411417.
J. Noguchi, K. Sato, N. Konishi, S. Uno, T. Oshima, K. Ishikawa, H. Ashihara, T. Saito, M. Kubo, T. Tamaru, Y. Yamada, H. Aoki, and T. Fujiwara, “ Process and reliability of air-gap Cu interconnect using 90-nm node technology,” IEEE Trans. Electron Devices 52, 352359 (2005).
L. G. Gosset, V. Arnal, P. Brun, M. Broekaart, C. Monget, N. Casanova, M. Rivoire, J. C. Oberlin, and J. Torres, “ Integration of SiOC air gaps in copper interconnects,” Microelectron. Eng. 70, 274279 (2003).
S. Nitta, D. Edelstein, S. Ponoth, L. Clevenger, X. Liu, and T. Standaert, “ Performance and reliability of airgaps for advanced BEOL interconnects,” in Proceedings of the IEEE International Interconnect Technology Conference IITC (2008), pp. 191192.
X. Zhang, S.-K. Ryu, R. Huang, P. S. Ho, J. Liu, and D. Toma, Mechanical Stability of Air-gap Interconnects ( Future Fab International, 2008), Vol. 27.
V. Kumaresan, C. J. Wilson, P. Verdonck, E. Van Besien, F. Lazzarino, V. Truffert, J. Bömmels, Zs. Tőkei, and T. K. S. Wong, “ Simulation and measurement of the capacitance benefit of air gap interconnects for advanced technology nodes,” Microelectron. Eng. 120, 9094 (2014).
H. Zahedmanesh, M. Gonzalez, I. Ciofi, K. Croes, J. Boemmels, and Z. Tokei, “ Design considerations for the mechanical integrity of airgaps in nano-interconnects under chip–package interaction; a numerical investigation,” Microelectron. Reliab. 59, 102107 (2016).
H. Zahedmanesh, M. Gonzalez, I. Ciofi, K. Croes, J. Bömmels, and Zs. Tőkei, “ Stress analysis of airgaps under process-induced thermo-mechanical loads,” Microelectron. Eng. 156, 7077 (2016).
P. S. Ho, K.-D. Lee, S. Yoon, X. Lu, and E. T. Ogawa, “ Effect of low k dielectrics on electromigration reliability for Cu interconnects,” Mater. Sci. Semicond. Process. 7, 157163 (2004).
S. P. Hau-Riege and C. V. Thompson, “ The effects of the mechanical properties of the confinement material on electromigration in metallic interconnects,” J. Mater. Res. 15, 17971802 (2000).
S. P. Hau-Riege, “ Probabilistic immortality of Cu damascene interconnects,” J. Appl. Phys. 91, 20142022 (2002).
F. L. Wei, C. L. Gan, T. L. Tan, C. S. Hau-Riege, A. P. Marathe, J. J. Vlassak, and C. V. Thompson, “ Electromigration-induced extrusion failures in Cu/low-k interconnects,” J. Appl. Phys. 104, 023529 (2008).
V. M. Dwyer, “ An investigation of electromigration induced void nucleation time statistics in short copper interconnects,” J. Appl. Phys. 107, 103718 (2010).
C. S. Hau-Riege, S. P. Hau-Riege, and A. P. Marathe, “ The effect of interlevel dielectric on the critical tensile stress to void nucleation for the reliability of Cu interconnects,” J. Appl. Phys. 96, 57925796 (2004).
K. Fischer, M. Agostinelli, C. Allen et al., “ Low-k interconnect stack with multi-layer air gap and tri-metal–insulator–metal capacitor for 14 nm high volume manufacturing,” in Proceedings of the IEEE International Interconnect Technology/Materials for Advanced Metallization Conference IITC/MAM 2015, pp. 57.
A. S. Lee, A. Lakshmanan, N. Rajagopalan, Z. Cui, M. Le, L. Q. Xia, B. H. Kim, and H. M'Saad, “ Reliability of dielectric barriers in copper damascene applications,” in Proceedings of IRW (2003), pp. 137138.
C. E. Murray, P. R. Besser, C. Witt, and M. Toney, “ In situ evolution of stress gradients in Cu films induced by capping layers,” Appl. Phys. Lett. 96, 261903 (2010).
C. E. Murray, P. R. Besser, E. Todd Ryan, and J. L. Jordan-Sweet, “ Triaxial stress distributions in Cu/low-k interconnect features,” Appl. Phys. Lett. 98, 061908 (2011).
C. E. Murray, P. R. Besser, E. Todd Ryan, and J. L. Jordan-Sweet, “ Manipulating stress in Cu/low-k dielectric nanocomposites,” Appl. Phys. Lett. 98, 141916 (2011).
S.-H. Rhee, Y. Du, and P. S. Ho, “ Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures,” J. Appl. Phys. 93, 39263933 (2003).
C. J. Zhai, H. W. Yao, A. P. Marathe, P. R. Besser, and R. C. Blish, “ Simulation and experiments of stress migration for Cu/low-k BEoL,” IEEE Trans. Device Mater. Reliab. 4, 523529 (2004).
C. J. Wilson, C. Zhao, L. Zhao, T. H. Metzger, Zs. Tőkei, K. Croes, M. Pantouvaki, G. P. Beyer, A. B. Horsfall, and A. G. O'Neill, “ Study of the effect of dielectric porosity on the stress in advanced Cu/low-k interconnects using x-ray diffraction,” Appl. Phys. Lett. 94, 181914 (2009).
C. J. Wilson, K. Croes, C. Zhao, T. H. Metzger, L. Zhao, G. P. Beyer, A. B. Horsfall, A. G. O'Neill, and Z. Tőkei, “ Synchrotron measurement of the effect of line width scaling on stress in advanced Cu/Low-k interconnects,” J. Appl. Phys. 106, 053524 (2009).
B. P. Shieh, M. D. Deal, and K. C. Saraswat, “ Electromigration reliability of low capacitance air-gap interconnect structures,” in IEEE Interconnect Technology Conference (2002), pp. 203205.
H. Zahedmanesh, K. Vanstreels, H. Zahedmanesh, and M. Gonzalez, “ A numerical study on nano-indentation induced fracture of low dielectric constant brittle thin films using cube corner probes,” Microelectron. Eng. 156, 108115 (2016).
M. A. Korhonen, P. Borgesen, K. N. Tu, and C.-Y. Li, “ Stress evolution due to electromigration in confined metal lines,” J. Appl. Phys. 73, 37903799 (1993).
R. L. de Orio, H. Ceric, and S. Selberher, “ Electromigration failure in a copper dual-damascene structure with a through silicon via,” Microelectron. Reliab. 52, 19811986 (2012).
M. W. Lane, E. G. Liniger, and J. R. Lloyd, “ Relationship between interfacial adhesion and electromigration in Cu metallization,” J. Appl. Phys. 93(3), 14171421 (2003).
P. R. Besser, E. Zschech, W. Blum, D. Winter, R. Ortega, S. Rose, M. Herrick, M. Gall, S. Thrasher, M. Tiner, B. Baker, G. Braeckelmann, L. Zhao, C. Simpson, C. Capasso, H. Kawasaki, and E. Weitzman, “ Microstructural characterization of inlaid Cu interconnect lines,” J. Electron. Mater. 30(4), 320330 (2001).
A. Stich, “ Development and electrical characterization of air gap structures for advanced metallization schemes,” Ph.D. dissertation, Technical University of Munich, 2007.
J. R. Black, “ Mass transport of aluminum by momentum exchange with conducting electrons,” in Proceedings of 6th Annual Reliability Physics Symposium (1967), pp. 148159.
J. R. Black, “ Electromigration-A brief survey and some recent results,” IEEE Trans. Electron Devices 16(4), 338347 (1969).
J. R. Black, “ Electromigration failure modes in aluminum metallization for semiconductor devices,” Proc. IEEE 57(9), 15871594 (1969).
K. Croes, M. Lofrano, C. J. Wilson, L. Carbonell, Y. K. Siew, G. P. Beyer, and Zs. Tőkei, “ Study of void formation kinetics in Cu interconnects using local sense structures,” in 2011 IEEE International Reliability Physics Symposium (IRPS) (2011), pp. 3E.5.13E.5.7.
D. Schneider and M. D. Tucker, “ Non-destructive characterization and evaluation of thin films by laser-induced ultrasonic surface waves,” Thin Solid Films 290–291, 305311 (1996).
C. Christiansen, B. Li, M. Angyal, T. Kane, V. McGahay, Y. Yu Wang, and S. Yao, “ Geometry, kinetics, and short length effects of electromigration in Mn doped Cu interconnects at the 32 nm technology node,” in 2012 IEEE International Reliability Physics Symposium (IRPS) (2012), pp. 5E.1.15E.1.4.
K. Kamata and N. Aizawa, “ Microhardness and internal stress of Si3N4-SiC films prepared by plasma CVD,” J. Mater. Sci. Lett. 5, 10551057 (1986).

Data & Media loading...


Article metrics loading...



In this study, electromigration (EM) of interconnects (90 nm pitch) with airgaps was investigated using a combination of computational mechanics, analytical modelling, and EM experiments. EM experiments reveal that airgapped Cu lines without dielectric liner (non-capsulated) fail early by voiding in the EM tests due to oxidation and deterioration of interfacial adhesion at Cu interfaces. Also at high temperature regimes, extrusive failures under thermal compressive stresses were observed in airgapped Cu lines without dielectric liner. Therefore, Cu encapsulation using a conformal dielectric liner of adequate thickness is necessary in order to ensure hermeticity and provide endurance to the thermal and EM induced extrusive stresses. For an airgapped interconnect with a hermetic 5 nm PECVD conformal carbon doped silicon nitride (SiCN) liner deposited at 370 °C, a comparable to that of non-airgapped interconnects (with ultra-low-k dielectric 2.5 inter-layer dielectric) was predicted by the simulations. The process-oriented simulations reveal, however, that the tensile stress in Cu lines increases linearly with the thickness of the SiCN liner. Therefore, increasing the thickness of the dielectric liner beyond the minimum thickness required for hermeticity was found to impact the critical line length adversely.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd