Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jap/120/9/10.1063/1.4962005
1.
R. D. Goldblatt, B. Agarwala, M. B. Anand, E. P. Barth, G. A. Biery, Z. G. Chen, and S. Gohen, in Proceedings of International Interconnect Technology Conference (2000), Vol. 1, pp. 261263.
2.
A. Grill, J. Appl. Phys. 93, 1785 (2003).
http://dx.doi.org/10.1063/1.1534628
3.
A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003).
http://dx.doi.org/10.1063/1.1618358
4.
B. Zhao and M. Brongo, MRS Proc. 565, 137 (1999), available at http://journals.cambridge.org/action/displayIssue?jid=OPL&volumeId=565&seriesId=0&issueId=-1
5.
J.-N. Sun, D. W. Gidley, T. L. Dull, W. E. Frieze, A. F. Yee, E. T. Ryan, S. Lin, and J. Wetzel, J. Appl. Phys. 89, 5138 (2001).
http://dx.doi.org/10.1063/1.1360704
6.
N. Posseme, T. Chevolleau, T. David, M. Darnon, O. Louveau, and O. Joubert, J. Vac. Sci. Technol., B 25, 1928 (2007).
http://dx.doi.org/10.1116/1.2804615
7.
X. Hua, M. Kuo, G. S. Oehrlein, P. Lazzeri, E. Iacob, M. Anderle, C. K. Inoki, T. S. Kuan, P. Jiang, and W. Wu, J. Vac. Sci. Technol., B 24, 1238 (2006).
http://dx.doi.org/10.1116/1.2194947
8.
K. Yonekura, K. Yonekura, K. Goto, M. Matsuura, N. Fujiwara, and K. Tsujimoto, Jpn. J. Appl. Phys., Part 1 44, 2976 (2005).
http://dx.doi.org/10.1143/JJAP.44.2976
9.
Y. Otsuka, Y. Shimizu, N. Kawasaki, S. Ogawa, and I. Tanaka, Jpn. J. Appl. Phys., Part 1 49, 111501 (2010).
http://dx.doi.org/10.1143/JJAP.49.111501
10.
E. Vyhmeister, L. Reyes-Bozo, H. Valdes-Gonzalez, J. Salazar, A. Muscat, L. Esteves, and D. Suleimoan, J. Supercrit. Fluids 90, 134 (2014).
http://dx.doi.org/10.1016/j.supflu.2014.01.019
11.
P. Marsik, P. Verdonck, D. Roest, and M. Baklanov, Thin Solid Films 518, 4266 (2010).
http://dx.doi.org/10.1016/j.tsf.2009.12.110
12.
J. Lee, W. Park, D. Kim, J. Choi, K. Shin, and I. Chung, Thin Solid Films 517, 3847 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.01.152
13.
C. Ye, Y. Xu, X. Hung, Z. Xing, J. Yuan, and Z. Ning, Microelectron. Eng. 86, 421 (2009).
http://dx.doi.org/10.1016/j.mee.2008.12.037
14.
S. Cho, I. Bae, Y. Park, B. Hong, W. Park, S. C. Park, and J. H. Boo, Surf. Coat. Technol. 202, 5654 (2008).
http://dx.doi.org/10.1016/j.surfcoat.2008.06.105
15.
P. Verdonck, V. Samara, A. Goodyear, A. Ferchichi, E. Besien, M. R. Baklanov, and N. Braithwaite, Thin Solid Films 520, 464 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.06.046
16.
S. Godavarthi, C. Wang, P. Verdonck, Y. Matsumoto, I. Koudriavtsev, A. Dutt, H. Tielens, and M. R. Baklanov, Thin Solid Films 575, 103 (2015).
http://dx.doi.org/10.1016/j.tsf.2014.10.033
17.
Z. Ming, H. Deng, S. Xie, and B. Zhang, Mater. Sci. Semicond. Process. 39, 235 (2015).
http://dx.doi.org/10.1016/j.mssp.2015.05.018
18.
C. Himcinschi, M. Friedrich, S. Fruhauf, S. E. Schulz, T. Gessner, and D. R. T. Zahn, Thin Solid Films 455–456, 433 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.241
19.
M. Albrecht and C. Blanchette, J. Electrochem. Soc. 145, 4019 (1998).
http://dx.doi.org/10.1149/1.1838907
20.
S. Sugahara, T. Kadoya, K. Usami, T. Hattori, and M. Matsumura, J. Electrochem. Soc. 148, F120 (2001).
http://dx.doi.org/10.1149/1.1369372
21.
B. C. Transferetti, C. U. Davanzo, and M. A. Moraes, Macromolecules 37(2), 459 (2004).
http://dx.doi.org/10.1021/ma035297a
22.
C. Y. Wang, J. Z. Zheng, Z. X. Shen, Y. Lin, and A. T. S. Wee, Thin Solid Films 397, 90 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)01401-8
23.
H. Seki, K. Inoue, N. Nagai, M. Shimada, K. Inukai, H. Hashimoto, and S. Ogawa, in Proceedings of Advanced Metallization Conference, 2004, pp. 3437.
24.
S. Ogawa, H. Seki, Y. Otsuka, S. Nakao, Y. Takigawa, and H. Hashimoto, in Proceedings of the International Interconnect Technology Conference, 2008, pp. 7678.
25.
H. Seki, N. Tarumi, Y. Shimizu, Y. Otsuka, H. Hashimoto, and S. Ogawa, in Proceedings of Advanced Metallization Conference, 2008, pp. 647650.
26.
W. A. Pliskin, J. Vac. Sci. Technol. 14, 1064 (1977).
http://dx.doi.org/10.1116/1.569413
27.
K. M. Davis and M. Tomozawa, J. Non-Cryst. Solids 201, 177 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00631-1
28.
A. Hartstein, J. R. Kirtley, and J. C. Tsang, Phys. Rev. Lett. 45, 201 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.201
29.
M. Osawa, Bull. Chem. Soc. Jpn. 70, 2861 (1997).
http://dx.doi.org/10.1246/bcsj.70.2861
30.
K. Ataka and J. Herberle, J. Am. Chem. Soc. 125, 4986 (2003).
http://dx.doi.org/10.1021/ja0346532
31.
H. Seki, M. Takada, T. Tanabe, T. Wadayama, and A. Hatta, Surf. Sci. 506, 23 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01441-3
http://aip.metastore.ingenta.com/content/aip/journal/jap/120/9/10.1063/1.4962005
Loading
/content/aip/journal/jap/120/9/10.1063/1.4962005
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jap/120/9/10.1063/1.4962005
2016-09-01
2016-09-30

Abstract

Microscopic Fourier-transform infrared (FT-IR) spectra are measured for a Cu/low-k interconnect structure using polarized IR light for different widths of low-k spaces and Cu lines, and for different heights of Cu lines, on Si substrates. Although the widths of the Cu line and the low-k space are 70 nm each, considerably smaller than the wavelength of the IR light, the FT-IR spectra of the low-k film were obtained for the Cu/low-k interconnect structure. A suitable method was established for measuring the process-induced damage in a low-k film that was not detected by the TEM-EELS (Transmission Electron Microscope-Electron Energy-Loss Spectroscopy) using microscopic IR polarized light. Based on the IR results, it was presumed that the FT-IR spectra mainly reflect the structural changes in the sidewalls of the low-k films for Cu/low-k interconnect structures, and the mechanism of generating process-induced damage involves the generation of Si-OH groups in the low-k film when the Si-CH bonds break during the fabrication processes. The Si-OH groups attract moisture and the OH peak intensity increases. It was concluded that the increase in the OH groups in the low-k film is a sensitive indicator of low-k damage. We achieved the characterization of the process-induced damage that was not detected by the TEM-EELS and speculated that the proposed method is applicable to interconnects with line and space widths of 70 nm/70 nm and on shorter scales of leading edge devices. The location of process-induced damage and its mechanism for the Cu/low-k interconnect structure were revealed via the measurement method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jap/120/9/1.4962005.html;jsessionid=qQcDbjpOnyQxs1PPp30-OQKq.x-aip-live-03?itemId=/content/aip/journal/jap/120/9/10.1063/1.4962005&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jap
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jap.aip.org/120/9/10.1063/1.4962005&pageURL=http://scitation.aip.org/content/aip/journal/jap/120/9/10.1063/1.4962005'
Right1,Right2,Right3,